

Land at Christy's Lane, Shaftesbury

Flood Risk Assessment

Project No.	1552
Revision	В
Date	17th August 2023
Client	Planning Issues Ltd
Prepared	O Clarke
Checked	L Blackmore
Authorised	C Yalden
File Ref.	p:\1552 land at christy's lane, shaftesbury\c documents\reports\1552 - land at christy's lane, shaftesbury - flood risk assessment.docx

1 Introduction

Introduction & Background

- 1.1 Awcock Ward Partnership has been commissioned by Planning Issues Ltd to prepare a Flood Risk Assessment in support of a full planning application for the proposed development of Land at Christy's Lane, Shaftesbury, Dorset, SP7 8TL.
- 1.2 The proposed retirement living scheme comprises 27 one-bedroom and 14 two-bedroom apartments, together with associated access, parking and amenity space.
- 1.3 The development is in the location of a former Cattle Market, bordered by Christy's Lane to the north and northeast; an existing supermarket access road and filling station (Tesco) to the south and southeast; and a recently constructed Lidl store access road and car park to the west.
- 1.4 The proposed site is within an area of predominantly commercial properties, with residential dwellings to the east and recreational grounds to the south.

- 1.5 The site will gain access from the Lidl store access road, which forms the western site boundary.
- 1.6 The location of the site in relation to its surroundings can be seen within Figure 1.1.

Figure 1.1 – Site Location Plan

- 1.7 This Technical Note has been prepared in accordance with the National Planning Policy Framework (NPPF) and Planning Policy Guidance - Flood Risk and Coastal Change guidance; and national drainage guidance (CIRIA C753 – The SuDS Manual).
- 1.8 This document sets out the existing baseline conditions in Section 2 and the development proposal in Section 3. The proposed surface water management plan and foul water strategy that will serve the development is discussed in Sections 4 and 5 respectively, with Section 6 providing the ownership and maintenance information before concluding in Section 7.

2 Existing Baseline Conditions

Existing Site

2.1 The existing site comprises brownfield land which lies parallel with the A350 (known locally as Christy's Lane) and sits adjacent the access road and customer car park for the recently completed Lidl supermarket.

- 2.2 Based on the topographic survey provided, it can be concluded that the site has an average gradient of approximately 1 in 40 from north to south, with the highest point at 219.09 mAOD in the northern corner and the lowest point at 217.12 mAOD in the southern corner.
- 2.3 The site is constrained by existing trees and Root Protection Areas (RPA's) along its northern and eastern boundaries. These tree constraints must be considered by the proposed surface water management plan and any future stages of design.
- 2.4 The topographical survey is included in Appendix A, with a copy of the arboricultural constraints plan included in Appendix B.

Existing Flood Risk

2.5 We have carried out a desktop assessment of potential flood risks to the site using the Environment Agency's (EA) Flood Information Service.

Fluvial sources (River/Sea flooding)

2.6 An extract of the 'Flood Map for Planning' has been reproduced as Figure 2.1 and shows the site as being within 'Flood Zone 1', with less than 1 in 1,000 annual exceedance probability (AEP) of river or sea flooding (<0.1%).

Figure 2.1– EA Flood Map for Planning

- 2.7 Figure 2.1 shows the full extent of the residential development and surrounding areas, including roads, to be within Flood Zone 1, with a 'low risk' of fluvial flooding (<0.1% AEP).
- 2.8 The site is not within a Critical Drainage Area (CDA).

Pluvial sources (surface water flooding)

2.9 The EA's 'Flooding from Surface Water' map has been reproduced as Figure 2.2 and shows the site at 'very low risk' of flooding from surface water (less than 0.1% annual exceedance probability, AEP). The mapping is based on LiDAR data and indicates the typical conveyance routes of surface water runoff.

2.10 Depth of surface water flooding in Christy's lane, in line with the Lidl store access junction, remains less than 150mm and will not prevent access and egress to the site.

Artificial sources

2.11 The proposed development is not located downstream of any reservoirs or other artificial sources (i.e., canals, mining operations etc.).

<u>Groundwater sources</u>

- 2.12 The site does not lie within a groundwater flood warning area.
- 2.13 Based on the EA long term flood risk information (online), flooding from groundwater is unlikely in this area.

Flood Risk Summary

2.14 The site is located within Flood Zone 1 and is not susceptible to surface water flooding or any other sources of flooding. Furthermore, the site does not lie within a CDA.

Ground Conditions

2.15 The site is located within an area with soils described by the Soilscape dataset as "freely draining slightly acid loamy soils" as seen in Figure 2.3.

Figure 2.3 – Soilscape mapping

- 2.16 A Ground Investigation (GI) was also completed by Crossfield Consulting in May 2023.
- 2.17 The GI concluded that Made Ground was present on the site, with depths typically ranging 0.6m-1.4m and comprising gravels over silty clays. No buried foundations or similars structures were encountered during the onsite investigations. Underneath the Made Ground lies Boyne Hollow Chert

Member strata; medium to high strength gravelly clays, and medium dense to desne clayey sands and gravels.

- 2.18 Groundwater was not encountered within any of the testing locations. The GI states that "groundwater is indicated at depths in excess of 5m; well record data indicates groundwater may be located in excess of 30m depth" (Crossfield Consulting, May 2023).
- 2.19 The Ground Investigation also found that there is currently 'no unacceptable level of risk to human health or groundwater resources' from contaminant linkages.
- 2.20 As part of the GI, Crossfield progressed testing in line with BRE Digest 365. The testing comprised two separate trial pit locations (TP1 and TP2), with depths of 1.8m and 2.0m respectively, within weathered Boyne Hollow Chert Formation stata (gravelly sand/sandy gravels with some siltly clay pockets/inclusions). The infiltration rates are summarised in Table 2.1, with extracts from the GI report included in Appendix C.

Test ID	Test number	Infiltration Rate (m/s)	Design Rate (m/s)
	1	2 x 10-5	
TP1	2	4 x 10-5	2 x 10-5
	3	*2 x 10-5	
	1	3 x 10-5	
TP2	2	4 x 10-5 3 x 10-	
	3	3 x 10-5	

Table 2.1 – Infiltration testing results

*estimated value

2.21 The site lies within Source Protection Zone III as seen in Figure 2.4 overleaf. The site's location within Zone III (total catchment) is relatively close to a groundwater abstraction site (Zone I).

Figure 2.4 – Source Protection Zones

- 2.22 Based on a risk assessment conducted by Crossfield Consulting (Ground Investigation Report, May 2023) they concluded that "no valid contaminant linkage is indicated in relation to Controlled Waters and no development constraints were identified in this context. On this basis, groundwater protection issues should not preclude the use of soakaway drainage systems".
- 2.23 The existing ground conditions support the use of infiltration drainage. In line with the approved drainage hierarchy, use of soakaways should be prioritised within this site; this will also improve groundwater recharge compared to the existing brownfield site, which serves to benefit the downstream abstraction.

Existing Site Drainage

- 2.24 A CCTV survey, carried out by Utility Surveys Ltd (April 2023), identifies a foul sewer passing through the northern extents of the site, from west to east.
- 2.25 The private foul sewer receives foul flows from the Lidl supermarket and additional CCTV Survey (Utility Surveys Ltd May 2023) confirmed that it continues east towards a connection with the Wessex Water (WW) network in Christy's Lane, to the southeast of the site (identified point of connection as MH9001).
- 2.26 The section of private foul sewer within the site has a recorded diameter of 225mm, reducing to 150mm as it exits the eastern site boundary and

continues past the Tesco filling station, towards it's point of connection on the adopted network.

- 2.27 At the time of the October 2011 Private Sewer Transfer regulations the application site was within the same ownership as the land now occupied by Lidl, and the Tesco Filling Station, and therefore this existing private foul sewer was not transferred to WW as an adoptable asset it remains private.
- 2.28 The additional CCTV survey (Utility Surveys Ltd May 2023) confirms that the off-site section of private foul sewer also receives connections from the Tesco Filling station and Car Wash facilities.
- 2.29 Copies of the final CCTV survey can be found within Appendix D.
- 2.30 The WW records, identify a 150mm diameter adopted foul sewer on the northern side of Christy's Lane and a 225mm diameter highway drain within the nearside footway of Christy's Lane, immediately north of the site. There are no nearby WW adopted surface water sewers in the area.
- 2.31 An extract of the WW mapping can be seen in Figure 2.5, with a full copy of the local asset records and correspondence included in Appendix E.

Figure 2.5 – WW Sewer Record Mapping

- 2.32 The topographic survey and CCTV drainage report (April and May 2023) identify a 600mm diameter storm drain within the nearside footway of Christy's Lane, laid parallel to the 225mm highway drain. This over-sized sewer was used to attenuate flows within the highway drain, providing capacity for an additional in-flow from the Lidl store.
- 2.33 Copies of the CCTV survey report are included in Appendix D with WW sewer records and correspondence provided in Appendix E.

Existing surface water runoff

- 2.34 Runoff from the existing brownfield site will accumulate towards the southern and eastern boundaries of the site, where it would be intercepted by two open pits, at 1.92m depth. The outlets from the pits were recorded as being blocked/abandoned possibly intersected by the existing private foul drain. Brownfield runoff is therefore expected to drain to ground, with any residual flow continuing overland, beyond the eastern and southern boundaries.
- 2.35 In line with best practice, re-development of brownfield sites should seek to limit peak flows to the equivalent greenfield rates. The equivalent greenfield rates for the site (0.252ha) have been calculated using the FEH methodology, with the results summarised within Table 2.2 below and the calculation sheet, for a unit area (1ha), included within Appendix F of this report.

Return Period	Greenfield rate per nit area (l/s/ha)	Greenfield Rate (l/s) (net dev: 0.252ha)
2 year	3.1	0.8
30 years	8.0	2.0
100 years	11.2	2.8

Table	2.1 -	Equivalent	Greenfield	Runoff Rates
IUNIC	_	Lyonacin	orcentera	Notion Naics

2.36 If runoff is attenuated and discharged at the equivalent greenfield runoff rates, peak flows would need to be limited to the equivalent greenfield rates as far as is reasonably practicable, without increased risk of blockage due to under-sized controls.

3 Development Proposal

3.1 The development proposes to construction a new apartment building which comprises 27 one-bedroom and 14 two-bedroom apartments, together with associated access, parking and amenity space.

3.2 A copy of the proposed site layout has been included within Appendix G.

Vulnerability

- 3.3 In accordance with the NPPF Annex 3: flood risk vulnerability classification, residential development is considered to be "More Vulnerable".
- 3.4 The Planning Practice Guidance indicates that "more vulnerable" development is appropriate within Flood Zone 1, and that the site would pass the Sequential Test, which aims to steer development to the lowest category of flooding (Flood Zone 1).
- 3.5 The proposed site gains access from Christy's Lane, which remains in Flood Zone 1 and is only susceptible to less than 150mm depth of flooding in the low risk event, with 1 in 1,000 year AEP. It is therefore considered that safe access and egress can be afforded to Christy's Lane throughout the developments lifetime.

Drainage requirements

- 3.6 'CIRIA C753 The SuDS Manual' advises that surface water disposal should be to be prioritised in the following order:
 - Infiltration.
 - Discharge to surface waters.
 - Discharge to a surface water sewer, highway drain or other drainage system.
 - Discharge to a combined sewer.
- 3.7 As required by the NPPF, the drainage strategy must demonstrate that the development will be safe throughout its lifetime, without increasing flood risk elsewhere, whilst also taking account of the impacts of climate change.

Climate change impacts

3.8 Climate change allowances for peak rainfall in England is published online by the Department for Environment, Food and Rural Affairs. The 'Dorset Management Catchment peak rainfall allowances' (https://environment.data.gov.uk/hydrology/climate-changeallowances/rainfall?mgmtcatid=3030, online) are summarised in Table 3.1 below. The climate recommendations provide for developments with a lifetime up to 2125 (epoch 2070s).

Table 3.1 – Peak rainfall allowance

Allowance category	Epoch	Central allowance	Upper end allowance
3.3% annual	2050s	20%	35%
exceedance rainfall event	2070s	25%	40%
1% annual	2050s	25%	40%
exceedance rainfall event	2070s	25%	45%

- 3.9 The 50th percentile (central allowance) is the point at which half of the possible scenarios for peak rainfall fall below it. The upper end allowance is based on the 95% percentile, thus only 5% of possible scenarios fall above an allowance level.
- 3.10 The attenuation for the proposed development has been sized to accommodate runoff from the development up to the 1 in 100 year return period storm, with 45% upper end peak rainfall climate change allowance as further discussed in Section 4.

4 Surface Water Management Plan

- 4.1 The site is less than 1ha and within Flood Zone 1.
- 4.2 To ensure the development is safe throughout its lifetime, the surface water strategy accounts for runoff in up to the 100 year return period.
- 4.3 The strategy also safeguards against the upper end allowances for climate change (45%) as stipulated for the Dorset Management Catchment, providing betterment over existing conditions, where the rate and volume of runoff would continue to increase due to climate change.
- 4.4 The Ground Investigation concluded that infiltration rates are sufficient to support the use of soakaways and groundwater is considered to be at depth. The use of soakaways is therefore prioritised in line with the drainage hierarchy.
- 4.5 Runoff from the site and proposed building will be intercepted and drained towards a new cellular soakaway beneath the parking court to the southwest of the building.
- 4.6 The cellular soakaway is proposed within the parking area inside the western extents of the site, outside any RPA constraints and with minimum 5m easement from any existing or new building foundations. The soakaway will be located at 2mBGL in line with the depth of testing and will comprise 0.8m soakaway structure and 1.2m depth of cover.

- 4.7 All chambers immediately upstream of the cellular soakaway will include silt traps, whilst the soakaway itself will include vented covers or a high-level vent pipe to mitigate air-locks.
- 4.8 Causeway Flow has been used to determine the size of the cellular soakaway to serve the development, based on the nearest test pit (TP2), with a Factor of Safety of 3, in line with CIRIA C753. The attenuation requirement can be seen summarised within Table 4.1, with copies of the modelling outputs included within Appendix H.

Table 4.1 – Attenuation Volumes

Attenuation Feature	Attenuation Volume (100yr +45% climate change)	
Cellular Soakaway	96.4m ³	
TOTAL	96.4m³	

- 4.9 The proposed surface water management plan will reduce the peak rates and volumes of runoff compared to baseline conditions and will also offer a significantly reduced pollution hazard compared to the sites previous use as a cattle market.
- 4.10 A copy of the preliminary drainage layout can be found on drawing 1552-01-PDL-1001 included within Appendix I.

Long Term Storage

4.11 The proposed development offers a reduced drainage catchment, with all runoff being drained to ground and therefore further consideration of long term storage (LTS) is not required.

Exceedance Measures

- 4.12 Beyond the 100-year critical storm exceedance runoff will be directed to exceedance paths, away from the building, towards any residual areas of open space and/or car parking, where aboveground storage can be used.
- 4.13 Beyond the limits of the site, exceedance flows would continue to the natural low points along the southern and eastern boundaries of the site, reflecting existing conditions but with a reduced exceedance rate and volume.

5 Foul Water Strategy

- 5.1 Foul flows generated by the proposed development will be served by a new private gravity network and will discharge into the existing private foul sewer which connects to the Wessex Water (WW) network within Christy's Lane (at MH9001).
- 5.2 The section of private foul sewer crossing the site will be diverted to accommodate the proposed development.
- 5.3 The private foul sewer originates from, and serves, the Lidl superstore to the west of the site before crossing the site and continuing southeast past the Tesco filling station and car wash facilities. The CCTV survey (May 2023) confirmed a connection from the Tesco filling station and Car Wash to the private sewer prior to discharge to the WW public foul sewer.
- 5.4 The existing foul flow from the LidI supermarket and Tesco Filling station have been assessed based on average flow predicted by the Foul Sewer Design Flow (Surveyor datafile, January 1992) (300 litres/day/100m²), and the British Water – Code of Practice – Flows and Loads 4 respectively (90 litres/day/employee). It is assumed that the Tesco Filling station has three full-time day staff, and the supermarket area has been measured from as-built drawings.
- 5.5 Existing flow from the Tesco Car Wash facility has been estimated based on predicted water use for the Auto Car Wash and Lance Bay. Calculation of the flow rate for each is provided in Table 5.1 below.

Car Wash Facilities	Flow Calculations	
	150 litres per car	
Auto Car Wash	3 min wash period	
Auto Car wash	50 litres/min	
	0.83 l/s avg.	
	100 Bar pressure washer typical flow	
Lance Bay	12 litres/minute	
	0.2 l/s avg.	
Total	1.03 l/s	

Table 5.1 – Tesco Car Wash facility predicted flows to private foul sewer

- 5.6 The projected foul sewage flow from the proposed retirement apartments have been assessed based on average flow predicted by the British Water – Code of Practice – Flows and Loads 4 (350 litres/day/person).
- 5.7 The expected occupancy (persons) for the apartments is based on the occupancy rates of similar, existing developments with average

occupancy rate of 1.18 and 1.47 persons per one-and two-bedroom apartments respectively.

5.8 The projected foul sewage flows are summarised in Table 5.2 with the calculation sheet included in Appendix J.

Development	Peak flow rate (I/s)
Proposed retirement apartments	1.417
Lidl Superstore	0.611
Tesco Filling Station	0.055
Tesco Car wash	1.030
Total	3.113

Table 5.2 – Summary of projected foul sewage flows

- 5.9 The pipe capacity of the private foul sewer has been assessed as 12.61/s using the Colebrook White Equation (HR Wallingford, 1990) for the 150mm diameter foul sewer at a minimum grade of 1 in 150. The calculation sheet is included in Appendix J.
- 5.10 It is concluded that the private foul sewer has sufficient capacity to serve the proposed development, with total future peak flow rate of 3.1131/s being significantly less than the available pipe capacity of 12.61/s.
- 5.11 In terms of wastewater connections, the developer is entitled to make a connection to the nearest practical point on the network where the existing sewer is at least the same diameter as the new sewer required to provide capacity for the development.
- 5.12 Under the provisions of the Water Industry Act 1992 (as amended), the developer will need to pay the sewerage undertaker the published sewer connection charges and infrastructure charge per dwelling, and the sewerage undertaker is responsible for any network reinforcement.
- 5.13 We propose to discharge foul to the public foul sewer on Christy's Lane via the existing private foul connection at MH9001.
- 5.14 A foul capacity enquiry was submitted to WW. WW has confirmed that "capacity is available to accommodate the foul flows from the proposed development, the nearest public foul sewer of suitable diameter or greater is the 225mm diameter located on Christy's Lane."
- 5.15 The proposed foul drainage arrangements can be seen on the preliminary drainage layout drawing 1552-01-PDL-1001 within Appendix I. The preapplication consultation response from WW is included in Appendix E.

6 Ownership & Maintenance

- 6.1 All on-site piped drainage will remain private and will be designed in accordance with Building Regulations Part H and will become the responsibility of the building operator.
- 6.2 The proposed attenuation will be retained under private ownership and will be operated and maintained by the building operator in accordance with CIRIA C753 Chapter 32, together with any manufacturer specific guidance.
- 6.3 At the detailed design stage, a 'Drainage Maintenance Plan' can be prepared to set out maintenance tasks, responsibilities, and frequencies for the entire drainage network.

7 Conclusion

- 7.1 The proposed development has been assessed in line with the National Planning Policy Framework, to allow the planning application to be progressed and to show that the development can be undertaken in an acceptable manner from a flood risk perspective.
- 7.2 The proposed site is located within Flood Zone 1 and are not known to be susceptible to flooding from pluvial, groundwater, infrastructure, or artificial sources.
- 7.3 To ensure the development is safe from flooding throughout its lifetime, the surface water strategy accounts for runoff in up to the 1 in 100-year return period.
- 7.4 The strategy also safeguards against climate change (45%), providing betterment over existing conditions, where the rate and volume of runoff would continue to increase due to climate change.
- 7.5 Infiltration is considered a suitable method of surface water disposal. The use of soakaways are therefore prioritised in line with the drainage hierarchy.
- 7.6 The proposed surface water management plan will reduce the peak rates and volumes of runoff compared to baseline conditions and will also offer a significantly reduced pollution hazard compared to the sites previous use as a cattle market.

- 7.7 Beyond the 100-year critical storm, exceedance runoff will be directed away from the proposed building and towards any residual areas of open space and/or car parking, where any aboveground storage can be used.
- 7.8 The existing on-site private foul sewer will be diverted to accommodate the development. Foul flows generated by the proposed development will be served by a new private gravity network and will tie into the diverted foul sewer, which continues downstream to Wessex Water's adopted foul network within Christy's Lane.
- 7.9 All on-site proposed drainage will remain private and will be designed in accordance with Building Regulations Part H and CIRIA C753 and will become the responsibility of the building operator.
- 7.10 As the development will be safe from flooding throughout its lifetime and will actively reduce the flood risk to properties within the downstream catchment, it is recommended that the Local Planning Authority confirm they have no objections to the proposed development.

Appendix A Topographic Survey

	Eove Ht 220.23 Ridge Height 22.4.73				
					E386900
I 200 N123075 N123075 N123075 N123075 N123075 N123075 N123075 N123050 N123050 Dr D Ag	N 12 3 100	N123125 N123125 N123125 N123125 N BL BM BM BL BM BL CA CA CA CA CA CA CA CA CA CA CA CA CA			
Image: Surveys of the station of this Drawing Remains Image: Surveys of the survey of the survey of the surveys will Guarantee that the surveys will Guarantee that the survey of the surveys will Guarantee that the surveys will Guarantee that the surveys of the surveys of the surveys will Guarantee that the survey of the survey of the surveys will Guarantee that the survey of the surveys will Guarantee that the survey of	Top of Bank - Toe of Bank - Building - Kerb - Foliage - Hedge - Verge - Verge - Verge - Road Markings - Tree - Spread/Trunk Dia/Height - Manhole - SWS Estimated Size FWS Estimated Size FWS Estimated Size	LEC Air Valve Bollard Bench Mark Boundary Point British Telecom Cover Cover Level Electric Power Pole Eave Level Fire Hydrant Floor Level Fence Post Gate Post Gate Post Gate Post Inspection Chamber Invert Level Kerb Outlet Basement Light Lamp Post Meter Manhole Cover Marker Milestone Ridge Level			
Living Scale: As Built Drainage Surveys Co-ordination Of Site Layouts Rectified Photo Elevations C.A.D Plotting Bureau Scale: Ao @ 1:200 Dwg No Revision SU 01 Sheet ID CHURCHILL-Shaftsbury-Christys s s treet to the Indicated Scale ONLY fith D & H Surveys.		GZEG98253 GZEG98253 RS RS Road Sign SC Stop Cock ST Str SV Stop Cock SV Stop Cock TL Threshold Level TP Telephone Pole WM Water Meter WO Wash Out UTL Unable To Lift Fence Descriptions B/W Barbed Wire C/B Close Board C/I Corrugated Iron C/I Chain Link C/P Chestmut Paling C/W Chicken Wire P/R Post & Rail P/W Post & Wire Post & Glass Roofed Stop Gilass Roofed Double Gates Double Gates	N123150	N123175	E3869255 0022 00 00 00 00 00 00 00 00 00 00 00 0

Appendix B Arboricultural Constraints Plan

Tree Location of trees, categ	e constraints plan orisation and development constraints
Christy's Lane, S	haftesbury, Dorset SP7 8TL
Barrell Plan Ref: 23061-1 A	
barrell	Permission is granted to scale from this drawing for Local Authority Planning Approval purposes relating to tree protection measures only. Where applicable this drawing is to be read in conjunction with the arboricultural report. This drawing is the copyright of Barrell Tree Consultancy 2023 © This drawing to be reproduced in colour only.
BS category	B Trees of moderate quality
TX BS category	C Trees of low quality
TX BS category	U Trees unsuitable for retention
Estimated tr land survey	ee positions not included on original and adjusted crown spreads
This constraints plan provides constraints when designing a reviewed with the individual tr this plan. If there is any doub must check it out with Barrell info@barrelltreecare.co.uk.	sufficient information to interpret the tree new layout. This guidance must be carefully ee information provided in the schedule on t about how to interpret this information, you Tree Consultancy (BTC) on 01425 651470 or
The number of each tree, hed quick identification of tree cate category C and U trees are bl inside a green triangle; the nu- rectangle. Category A trees a are shown with double rectan- ground disturbance should oc indicating where shading, don is annotated with light shading	ge and group is highlighted in colour to enable egories. Category A and B trees are green; ue. The number of each A and B tree is set umber of each C and U tree is set inside a blue re shown with double triangles and U trees gles. Zone 1, indicating the RPA where no cur, is annotated with dark shading. Zone 2, ninance and/or future growth may be an issue, g.
How to use the Our interpretation of the starting is that only category A and B layout, so the category C and advice. The constraints that the been assessed as follows:	ne constraints information ng-point recommendations of BS 5837(2012) rees are sufficiently important to influence a U trees are discounted in this constraints he A and B trees are likely to impose have
Zone 1 (dense coloured sha (RPA) where ground disturbat encroachment is planned with tree-by-tree basis by BTC. If no significant disturbance sho care is needed when working	ding): This is called the root protection area nee must be carefully controlled. If in the RPA, then this must be assessed on a important trees are to be successfully retained, uld occur within the RPA and a high level of within it.
Zone 2 (light coloured shad shading/dominance/future gro how much space may be need activity when the pressures of such as crown density, future sun and the number of trees i second, less restrictive, const for occupied buildings, but un acceptable within it.	ing): The second constraint is where wth may be an issue and is our estimate of ded to retain trees after the development residential occupation come to bear. Factors growth potential, orientation in relation to the n groups are considered to arrive at this raints zone. Zone 2 is not normally suitable inhabited structures and hard surfacing may be
Zone 3 Nominal RPA radii Low quality only to be conside scope within the layout and th potential to establish new tree	for category C trees: ered for retention if there is ey do not compromise the s of higher future sustainability.
Designers should try to avoid the LPA will consider them im proposal. Category C trees c within the scheme. However, and layouts do not have to be point in the design process, not the RPA of any category A and sometimes scope to reduce the corresponding increase can be the RPA remaining the same. exception rather than the rule by BTC. Under some circumstances, it services (including drains and zone 1, but special precaution consultation with BTC. Howe the more encroachment there object to the layout. Further of buildings; areas within the ex or in areas of excessive shad illustrated on the plan. Excep garages may be acceptable w to residential occupied buildin be an option, but often promp proposed, BTC must advise of	the loss of category A and B trees because portant in determining the full impact of the an be considered for retention if there is scope their loss should not be a material constraint designed around keeping them. As a starting o significant disturbance should occur within d B trees shown as zone 1. There is its slightly in some directions if a e achieved in other directions that results in However, such changes should be the and must be assessed on a tree-by-tree basis may be acceptable to place footpaths, roads, soakaways) and unoccupied buildings within is will be required and should be detailed after ver, designers should always remember that is into the RPA, the more likely the LPA are to onsideration is required for occupied isting or future crown spread of retained trees a should be avoided. This is the zone 2 tionally, non-inhabited buildings such as rithin zone 2, but this would not normally apply gs. Pruning overhanging branches may also ts objections from LPAs. If such pruning is n the implications.

Limitations and warnings

- This plan is confidential to the client and should not be released to
- any third parties without authorisation
- It does not consider any ecological or other constraints that may exist
 on the site
- Assessing constraints is subjective, especially the zone 2 advice, and the LPA may not agree with the BTC interpretation
 The plan is based on provided information and should only be used
- for dealing with the tree issues
- All scaled measurements must be checked against the original documents
- This constraints guidance is preliminary and only suitable for drawing up initial design proposals
 Further consultation with BTC is essential before finalising any layout

Confidential - Design Team Use Only -Do Not Release to Third Parties

Tree No	Species	Height	Category	RPA Radius (m)
T1	Beech	8	С	4.2
G2	Hawthorn	4	С	2.4
Т3	Birch	9	С	1.2
G4	Elder	4	С	3.6
G5	Beech, maple	6	С	3.6
G6	Maple	7	С	3
T7	Alder	12	В	4.8
Т8	Norway maple	10	С	3.6
Т9	Alder	9	В	5.1
T10	Beech	15	В	6.3
T11	Beech	16	В	7.5
T12	Beech	14	В	6
T13	Beech	3	С	0.9
T14	Beech	13	В	3.9
T15	Beech	17	В	4.8
T16	Beech	16	В	7.5
T17	Ash	12	U	6
T18	Ash	10	U	6

Appendix C Ground Investigation Reports

Hydrogeological information indicates that the bedrock strata is classified as 'Principal Aquifer'. There is no listed aquifer within superficial deposits. Approximately 100 m north of the site is a licenced groundwater abstraction (Wincombe Lane) for industrial/general use. About 350 m west of the site, is a licensed groundwater abstraction (Barton Hill Wells) that provides a potable water supply operated by Wessex Water. There are no other active water abstractions listed within 1 km. The site lies within a Zone 3 Source Protection Zone (Total Catchment). The site also lies within an extensive Drinking Water Safeguard Zone (Surface Water), but is not within a designated Protected Area, nor within a Drinking Water Safeguard Zone (Groundwater).

The Groundsure report (based on UK Health Security Agency and British Geological Survey data, updated December 2022) indicates that the site is within an area where Basic radon precautions should be provided in new buildings.

5. GROUND CONDITIONS AND GEOLOGICAL MODEL

5.1 Ground Investigation

Details of the rationale and scope of the ground investigation and laboratory testing, together with exploratory hole logs, monitoring, in situ and laboratory test results, are given in Appendix I. The investigation has identified the presence of the following, below the site.

5.2 Buried Foundations and Services

No buried foundations or other such structures were encountered during the ground investigation. It is understood that a foul drain crosses, east to west, within the northern part of the site. Although no major former buildings are recorded within the site, it remains possible that buried remains of other structures (such as weigh-bridges or other features) could be present below surface.

5.3 Strata Encountered

Made Ground

Made Ground was encountered across the site, to typical depths of between 0.6 m to approximately 1.4 m. The materials generally comprise gravels over silty clays with man-made inclusions, such as brick.

Weathered Boyne Hollow Chert Member

Boyne Hollow Chert Member strata encountered at the site generally comprise medium dense clayey gravels and sands with high cobble content and layers of firm to stiff consistency (estimated high strength) sandy clays. An upper layer of clayey gravels, overlie sands with sandstone lithorelics. Extremely weak sandstone strata were encountered within one pit at 2.3 m depth. These strata were proven to a maximum depth of 5 m, below this strength/density of the strata precluded further boring/sampling.

5.4 Groundwater

Groundwater was not encountered within any of the exploratory holes. With reference to the data ion the Desk Study Appraisal Report, groundwater is indicated at depths in excess of 5 m; well record data indicates groundwater may be located in excess of 30 m depth.

The groundwater conditions are based on observations made at the time of the fieldwork. It should be noted that groundwater levels may vary due to seasonal and other effects.

6. PROPOSED DEVELOPMENT

The proposed development includes the following buildings and other structures, as shown on Figure 3:

- Up to three-storey retirement apartment building
- Car parking
- Areas of managed soft landscaping
- Associated infrastructure

7. ASSESSMENT OF POTENTIAL CONTAMINATION AND GROUND GASES

7.1 Assessment Criteria

Assessment of potential contamination and ground gases has been undertaken using a risk assessment-based approach, as recommended within the Environmental Protection Act (1990) (and subsequent amendments), Environment Agency LCRM (2020), CLEA Model (2004-2009), BS 10175:2011+A2:2017, CIRIA C552 (2001) and NHBC R&D Report 66 (2008). This approach considers the likely source of contamination, given the history and location of the site, and the possible migration pathways by which these potentially hazardous substances may reach likely receptors, such as end users of the site, controlled waters or the wider environment, in the context of the proposed development.

Part IIA of the Environmental Protection Act (1990) states that

'Contaminated Land is any land which appears to the local authority in whose area it is situated to be in such a condition, by reason of substances in, on or under the land, that –

- (a) significant harm is being caused or there is a significant possibility of such harm being caused; or
- (b) significant pollution of controlled waters is being caused or there is significant possibility of such pollution being caused;'

All risk assessments carried out as part of this investigation have been carried out with respect to the definition of 'contaminated land' within Part IIA of the Environmental Protection Act (1990) and have considered the site both before and on completion of the development. The basis of the risk assessment is the Conceptual Site Model, which is derived from the desk study and initial information and identifies potential contaminant linkages that could affect receptors relevant to the site and the wider environment. The Conceptual Site Model is presented in Table 1.

Based on the model, a ground investigation was designed to obtain relevant information to assess further the identified contaminant linkages. Where relevant, this included the recovery of representative samples and subsequent analytical laboratory testing. The rationale for the sampling and testing is set out in Appendix I. The results of the analytical testing are presented in Appendix I and summarised in Tables 2 and 3. On the basis of the conceptual site model and the results of the analytical laboratory testing are presented in Tables 4.

7.2 Potential Sources of Contamination

Historical maps indicate that the site has been associated with the former cattle market since the 1960s and previously had structures present. Given the age of the market development, it is possible that ash and clinker rich materials have been used as a sub-base layer in the past. These materials can contain high metal and polyaromatic hydrocarbon concentrations. It is likely that the cattle market would have disinfecting procedures in place. Modern disinfectants are unlikely to be of environmental concern. However, historical disinfectants may have contained such chemicals as phenols (and other semi-volatile organic compounds (SVOCS)) or been acid-based. It is possible that the disinfectant-related compounds, as indicated above, could have entered the shallow soils, although in view of the small volumes of such substances used, the period since such materials might have been used and hard-surfacing across the site, significant soil impaction would not be expected and a valid migration pathway to the (relatively deep) groundwater is not currently indicated.

Former structures on site may have been associated with asbestos containing construction materials. During demolition of the former structures, it is possible that such asbestos containing materials (ACMs) could have entered the ground. However, as it is understood that demolition was completed relatively recently, it can be presumed that safe statutory working procedures were followed, such that risks of ACMs remaining within the ground should be very low.

On the adjacent land to the east of the site there is a fuel station. Such a site is associated with storing large amounts of petroleum hydrocarbons. Whilst there is potential for such hydrocarbons to leak and leach into the surrounding ground, the facility is of modern design and controlled by Environmental Permits, hence the risk of a significant pollution incident occurring that would result in detriment to the development is considered to be very low. Notwithstanding this, it should be appreciated that planning policies may require a designated separation between a residential development and the location of fuel storage tanks, in compliance with fire safety regulations.

Based on the available information, representative soil samples were recovered from the Made Ground materials encountered beneath the site and tested for the potential contaminants identified above. The test results are summarised in Table 2 and are presented against generic assessment criteria (GAC) and Category 4 Screening Levels (C4SL), relevant to the protection of human health in a residential development with managed landscaping. As can be seen from Table 2, all potential contaminant concentrations are recorded below the GAC (negligible risk to human health) and C4SL (low but acceptable risk to human health) and therefore, do not represent an unacceptable risk to end users. Additional comments relevant to human health risk assessment are provided in Section 7.3.1.

Based on appropriate laboratory test data, risks to construction materials are assessed in Section 7.3.2.

No significant concentrations of potentially phytotoxic chemicals have been recorded. However, as the site is currently devoid of topsoil, a suitable thickness of topsoil is likely to be required to provide a growing medium in proposed soft landscaping areas. Further comment is provided in Section 7.3.3.

In addition to soil testing, leachates, generated from soil samples recovered from the site, have been analysed for metal compounds and are compared, in Table 3, against relevant environmental standards (in view of the nearby water supply, drinking water standards are referenced). The testing has not identified significant exceedances above the standards within the small volumes of Made Ground recorded on site. It is also noted that a significant unsaturated zone (likely to be in excess of 30 m) is indicated below the site which would significantly promote dispersion/adsorption. No significant concentrations of mobile potential contaminants have been identified. On this basis, it is considered that there is no valid contaminant source present at the site in relation to controlled waters and no further risk assessment is required.

There is no evidence to suggest that putrescible material or significant thicknesses of organic Made Ground should be expected beneath the site and there are no active or historical landfills within influencing distance of the site. However, the site is located within an area where Basic precautions against the ingress of radon gas are required in new buildings.

7.3 Contaminant Linkages – Solids and Liquids

Based on the Conceptual Site Model, consideration is given below to identified contaminant linkages and a risk evaluation is undertaken of each possible source-pathway-receptor linkage that may occur at the site. The risk evaluation considers the potential consequences and probability of occurrence in accordance with CIRIA C552 (2001). Where risks are identified as 'negligible', then by implication such risks are within normally accepted levels for the proposed development, and the further reduction of such risks by remediation works is considered unnecessary. Where risks are identified that are 'low' as defined in CIRIA C552 (2001), or worse, then consideration is given to the management of the identified risks, with appropriate recommended actions that may include engineering solutions/remediation works as described in the following sections.

7.3.1 Human Health

Potential contaminants associated with the site history have been identified at concentrations below relevant GAC and C4SL values and asbestos fibres have not been recorded. Therefore, no valid contaminant linkages for the proposed development have been identified.

Groundworkers involved in the constructions of the new development are unlikely to be exposed to short term (acute risks). However, in line with good practice, it is recommended that appropriate personal protective equipment (PPE) be worn and high levels of personal hygiene be maintained by groundworkers. To minimise soils at the site becoming airborne and moving beyond the site boundaries during earth moving operations, it is recommended that appropriate soil dampening equipment be maintained on site during dry periods to minimise dust generation.

7.3.2 Durability of Buried Structures and Services

In view of the low soluble sulphate content and near-neutral soil conditions, there are no special precautions required for the protection of good quality buried foundation concrete. Based on guidance within *BRE Special Digest 1* (2005), the specified DC Class of concrete for buried structures and foundations should be suitable for an ACEC site classification of AC-1.

The site maybe considered to be 'brownfield' under the definition provided by UKWIR (2010) with respect to the assessment of ground for water supply pipes. Based on the guidance provided by UKWIR, there would be a requirement to test appropriate soil samples from the line of proposed potable water supply pipes and to compare the test results with published criteria before consideration could be given to using conventional plastic materials for potable supply pipes. It would be prudent, therefore, to make allowance for the use of multi-layer barrier pipes. If the Client wishes to use conventional plastic materials, testing can be undertaken once the potable supply layout has been finalised. Alternatively, the decision can be made to provide the barrier pipe materials without undertaking additional testing.

It should be noted that individual water companies may have in-house requirements for the assessment of ground conditions for potable water supply pipes and these requirements may be in addition to, or may contradict, the guidance provided by UKWIR. Therefore, it is recommended that the relevant water supply company be consulted prior to finalising the potable water supply design.

7.3.3Landscape Areas

It is noted that the site is largely devoid of topsoil for a suitable growing medium. Therefore, there will be a requirement to import topsoil to provide a growing medium for plants. The topsoil quality requirements for the imported materials should consider both the proposed planting and any imported soils should be verified with documentation/laboratory test reports as suitable for use within a residential development (and compliant with published NHBC requirements).

7.4 Contaminant Linkages – Gases

Based on the Conceptual Site Model, consideration is given below to identified contaminant linkages and a risk evaluation is undertaken of each possible source-pathway-receptor linkage that may occur at the site. Where risks are identified as 'negligible', then by implication such risks are within normally accepted levels for the proposed development, and the further reduction of such risks by remediation works is considered unnecessary. Where risks are identified that are 'low' as defined in CIRIA C552 (2001), or worse, then consideration is given to the management of the identified risks, with appropriate recommended actions that may include engineering solutions with remediation works or ground gas protection and control systems as described below. Reference is made to guidance published in BRE BR211 (2015), as referenced by the Building Regulations, to relevant assessment criteria published in BS 8485:2015+A1:2019and to best-practice guidance as published in BS 8576:2013, CIRIA C665 (2007) and NHBC/RSK (2007), as listed in the References.

There is no evidence to suggest that putrescible material or significant thicknesses of organic Made Ground should be expected beneath the site and there are no active or historical landfills within influencing distance of the site. On this basis, it is evident that there are no valid contaminant linkages regarding landfill type gases.

Notwithstanding the above, the site lies within an area where 'Basic' radon precautions should be provided within new buildings in compliance with the guidance published in BRE BR211 (2015), and NHBC Technical Guidance 4.1/01 (2023).

7.5 Recommended Remedial Works

On the basis of the available information, the following remedial works are recommended:

- Installation of 'Basic' radon precautions within the proposed building(s) is required in compliance with the guidance published in BRE BR211 (2015), Approved Document C (2013). 'Site preparation and resistance to contaminants and moisture' (2004 Edition incorporating 2004, 2010 and 2013 amendments) and NHBC (2023) Technical Guidance 4.1/01.
- With reference to the above, sufficient protection should be provided by a well-installed 1200-gauge (300 μm) polyethylene membrane modified and extended to form a radon barrier across the footprint of the building (including across wall cavities, and sealed against services penetrations).
- The installation of the radon precautions should be inspected and recorded, in compliance with the requirements of NHBC/Building Control organisation (and, if applicable, local planning authority).

7.6 Construction Management/Best Practice

In compliance with normal good practise in the redevelopment of brownfield land, consideration should be given to the following:

water may locally be encountered. If perched water does enter excavations, screened sump pumping may be required.

11. ASSESSMENT OF SOAKAWAY DRAINAGE

Soakaway data is summarised in Table I-4. On the basis of the ground investigation data, the ground conditions may be considered to be compatible with a soakaway drainage solution, as outlined in the guidance published in CIRIA C753 (2015). Consideration may be given to an infiltration value of 2×10^{-5} m/s for soakaway assessment/design.

As outlined in Section 3, the site is underlain by Principal Aquifer strata and lies within a Zone 3 Source Protection Zone. However, with reference to the risk assessment in Section 7, no valid contaminant linkage is indicated in relation to Controlled Waters and no development constraints were identified in this context. On this basis, groundwater protection issues should not preclude the use of soakaway drainage systems, although reference should be made to any requirements of the Environment Agency in this regard.

With reference to the guidance published in Environment Agency (2018), which includes Position Statement G12, the discharge of clean roof-water to ground is considered acceptable by the Agency. Reference may be made to the Agency Position Statements G10 and G13 regarding the discharge of surface runoff water from hard-standing areas, and such soakaway systems should comply with the following:

- Be of suitable design.
- Comply with published design standards for SuDS drainage systems.
- Provide a 'robust' surface water management system that does not pose an unacceptable risk of pollution to groundwater.

It should be appreciated that soakaways should be located in areas that maintain the necessary foundation support to existing and proposed structures. Preliminary drainage designs may consider a minimum distance of 5 m between soakaways/infiltration and the foundations of existing and proposed structures.

In order to minimise risks of potential inundation settlement/subsidence, soakaways should not discharge into Made Ground materials.

12. ROAD PAVEMENTS

Based on the nature of the shallow soils beneath the site a preliminary design equilibrium CBR of 3% may be considered for the design of road pavements. The materials at shallow depth should be regarded as frost susceptible.

13. ASSESSMENT OF MATERIALS FOR WASTE DISPOSAL

There is no requirement to remove soils from site and, therefore, development levels should be set such that soils can be retained and reused on site where possible. Providing development levels are set to accommodate soil arisings (for example, from foundation excavations), such materials would not be classified as waste if retained and re-used on site. However, if materials are excess to requirements, they should be taken to an appropriately permitted waste facility.

TABLES

CONCEPTUAL SITE MODEL

	Potential Contaminant Source	Potential Contaminants	Potential Pathway	Receptors and Assessed Contaminant Linkage
On-Site Solid Off-Site Solid	Former cattle market Demolition of historical buildings No evidence of potential source	Toxic metals Phytotoxic metals Polyaromatic hydrocarbons Semi-Volatile organic compounds (SVOC – phenols) Asbestos fibres/ACM	Dermal and oral exposure pathways (including air-borne migration) are present during construction phase but will generally not be present following development due to building and hardstanding effective barriers. Limited landscaping areas after development represent possible dust exposure pathways. Certain organic compounds can readily penetrate plastic construction materials.	Human Health End Users: Possible contaminant linkage Groundworkers: Possible contaminant linkage Neighbouring Properties: Possible contaminant linkage Buried Structures & Services Buried concrete: No contaminant linkage Potable water pipes: Possible contaminant linkage Other buried structures: No contaminant linkage
			Release into Liquid Phase Metals and PAHs have generally low solubility. SVOCs may have variable solubility/mobility depending on specific substance. Potential for plant uptake of metals. Release into Vapour Phase No valid source indicated.	Landscape Areas Possible contaminant linkage
On-Site Liquid	Former Cattle market (no evidence of large-scale liquid storage, leaks from small containers likely to be fully adsorbed to soils)	Semi-Volatile organic compounds (SVOC – phenols)	No shallow groundwater is indicated. Hence, a valid migration pathway to groundwater is not currently indicated.	
Off-Site Liquid	Petrol station to east (potential for free-phase/dissolved phase source crossing site boundary). However, risks mitigated by storage/operational requirements and associated permits	Petroleum hydrocarbons Volatile organic compounds	Release into Vapour Phase No valid source indicated.	
On Site Liquid	Former Cattle market (no evidence of large-scale liquid storage, leaks from small containers likely to be fully adsorbed to soils) Leaching from solid source	Semi-Volatile organic compounds (SVOC – phenols) Metals (limited potential source) Petroleum hydrocarbons (source dependent on mobile fraction presence) Polyaromatic hydrocarbons (limited potential source) Semi-volatile organic compounds (SVOC – phenols)	A significant unsaturated zone is indicated, such that groundwater appears to be well below Made Ground and potentially impacted soils, such that a valid migration pathway to groundwater is not currently indicated.	Controlled Waters <i>Groundwater:</i> Principal aquifer, Zone 3 Source Protection Zone – No contaminant linkage <i>Surface Water</i> : No nearby watercourses – No contaminant linkage
Ground Gases	Radon affected area Landfill type gases – no viable source indicated	Radon	Limited potential for gas migration to the site. Ground gases may enter the proposed building through cracks in floor slabs or cavity walls due to pressure differential	Human Health End Users: Possible contaminant linkage (Radon)

NOTES

The above conceptual model is based on CIRIA C552 (2001) and BS 10175:2011+A2:2017, BS EN ISO 21365:2020 and Environment Agency Land Contamination Risk Management (LCRM) (2022). 1.

The Conceptual Site Model is prepared from available desk study information. Where a site walkover or ground investigation identifies information that was not known at the desk study stage, such information is used to modify the Model. 2.

Where a contaminant linkage is identified, any subsequent ground investigation is designed to obtain relevant information to assess the contaminant linkage. See Table 3 for a summary of contaminant linkage assessments. 3.

TABLE 1

TABLE 2(Page 1 of 2)

SUMMARY OF ANALYTICAL TEST DATA: SOILS RISKS TO HUMAN HEALTH

Determinand	Units	No of Tests	Concen (mg	tration /kg)	Generic Assess (mg/ Residential W Upta	ment Criteria 'kg) 'ithout Plant ake	Category 4 Screening Level (mg/kg) Residential Without Plant Uptake		
			Min	Max	Value	No>GAC	Value	No>C4SL	
Arsenic	mg/kg	6	3.8	8.2	40 ¹	0	40 ³	0	
Cadmium	mg/kg	6	<0.2	0.4	85 ¹	0	149 ³	0	
Chromium (Total) ⁴	mg/kg	6	24	52	910 ¹	0	-	-	
Chromium (VI)	mg/kg	6	<1.8	<1.8	6 ¹	0	21 ³	0	
Lead	mg/kg	6	22	140	-	-	310 ³	0	
Inorganic Mercury	mg/kg	6	<0.3	<0.3	56 ¹	0	-	-	
Nickel	mg/kg	6	11	33	180 ¹	0	-	-	
Selenium	mg/kg	6	<1.0	<1.0	430 ¹	0	-	-	
Copper	mg/kg	6	6.9	21	7100 ¹	0	-	-	
Zinc	mg/kg	6	29	110	40,000 ¹	0	-	-	
Boron	mg/kg	6	0.3	0.7	11,000 ¹	0			
Phenols	mg/kg	6	<1.0	<1.0	440 ¹	0	-	-	
βH	-	10	6.4	7.7	-	-	-	-	
Total Organic Carbon	%	6	0.2	1.8	-	-	-	-	
Petroleum Hydrocarbons									
TPH: C ₆ – C ₃₅	mg/kg	6	<20	<20	-	-	-	-	
Aliphatics $C_5 - C_6$	mg/kg	4	<0.001	<0.001	78 ¹	0	-	-	
Aliphatics $C_6 - C_8$	mg/kg	4	<0.001	<0.001	230 ¹	0	-	-	
Aliphatics $C_8 - C_{10}$	mg/kg	4	<0.001	<0.001	65 ¹	0	-	-	
Aliphatics $C_{10} - C_{12}$	mg/kg	4	<1.0	<1.0	330 ¹	0	-	-	
Aliphatics $C_{12} - C_{16}$	mg/kg	4	<2.0	<2.0	2400 ¹	0	-	-	
Aliphatics $C_{16} - C_{35}$	mg/kg	4	<16	<16	92,000-	0	-	-	
Aromatics $C_6 - C_7$	mg/kg	4	<0.001	<0.001	690 ¹	0	-	-	
Aromatics $C_7 - C_8$	mg/kg	4	< 0.001	< 0.001	1800 ¹	0	-	-	
Aromatics $C_8 - C_{10}$	mg/kg	4	< 0.001	< 0.001	110 ¹	0	-	-	
Aromatics $C_{10} - C_{12}$	mg/kg	4	<1.0	<1.0	590 ¹	0	-	-	
Aromatics C ₁₂ – C ₁₆	mg/kg	4	<2.0	<2.0	2300 ¹	0	-	-	
Aromatics C ₁₆ – C ₂₁	mg/kg	4	<10	<10	1900 ¹	0	-	-	
Aromatics C ₂₁ – C ₃₅	mg/kg	4	<10	<10	1900 ¹	0	-	-	
VOCs									
Benzene	mg/kg	6	<0.005	<0.005	0.70 ¹	0	1.6 ³	0	
Toluene	bluene mg/kg 6 <0.005 <0.005		<0.005	1900 ¹	0	-	-		
Ethylbenzene	Ibenzene mg/kg 6 <0.005 <0.005		<0.005	190 ¹	0	-	-		
Xylene	mg/kg	6	<0.005	<0.005	180 ¹	0	-	-	
MTBE	mg/kg	6	<0.005	<0.005	120 ²	0	-	-	
Asbestos	%	6	Not Detected	Not Detected	-	_	-	-	

TABLE 2

Determinand	Units No of Tests		Concen (mg/	tration /kg)	Generic Asse (m Residential Uj	essment Criteria ng/kg) Without Plant ptake	Category 4 Screening Level (mg/kg) Residential Without Plant Uptake	
			Min	Max	Value	No>GAC	Value	No>C4SL
PAHs								
Naphthalene Acenaphthylene Acenaphthene	mg/kg mg/kg mg/kg	6 6 6	<0.05 <0.05 <0.05	<0.05 <0.05 <0.05	5.6 ¹ 4600 ¹ 4700 ¹	0 0 0		- -
Fluorene	mg/kg	6	< 0.05	< 0.05	1600 ¹	0	-	-
Phenanthrene Anthracene	mg/kg mg/kg	6 6	<0.05 <0.05	<0.05 <0.05	1500 ¹ 35,000 ¹	0 0	-	-
Fluoranthene	mg/kg	6	<0.05	0.13	1600 ¹	0	-	-
Pyrene	mg/kg	6	<0.05	0.12	3800 ¹	0	-	-
Benz(a)anthracene	mg/kg	6	<0.05	0.07	14 ¹	0	-	-
Chrysene	mg/kg	6	<0.05	0.09	31 ¹	0	-	-
Benzo(b)fluoranthene	mg/kg	6	<0.05	0.10	4.0 ¹	0	-	-
Benzo(k)fluoranthene	mg/kg	6	<0.05	0.05	110 ¹	0	-	-
Benzo(a)pyrene	mg/kg	6	<0.05	0.08	3.2 ¹	0	5.3 ³	0
Indeno(123cd)pyrene	mg/kg	6	<0.05	<0.05	46 ¹	0	-	-
Dibenzo(ah)anthracene	mg/kg	6	<0.05	<0.05	0.32 ¹	0	-	-
Benzo(ghi)perylene	mg/kg	6	<0.05	<0.05	360 ¹	0	-	-
Other SVOCs	mg/kg	6	<0.3	<0.3	-	-	-	-

NOTES

1. Suitable for Use Level (S4UL) published by LQM/CIEH, 2015 – Residential Without Plant Uptakelanduse. S4UL assumptions comprise 2.5% soil organic matter, soil pH of 7 and sandy loam soil type.S4ULs are copyright © Land Quality Management Limited reproduced with permission; Publication Number S4UL3133.

2. Soil GAC for Human Health Risk Assessment produced by CL:AIRE (2010) – Residential Without Plant Uptake. Assumption of 2.5% soil organic matter.

3. Category 4 Screening Level (C4SL), Department for Environment Food and Rural Affairs (March 2014) – calculated for 2.5% SOM using the CLEA Model v1.071

4. In the absence of desk study or historical map evidence indicating a potential source of chromium (VI) usage at or in the near vicinity of the site (and confirmed by laboratory testing), total chromium concentrations have been compared to the GAC for chromium (III).

TABLE 3

SUMMARY OF ANALYTICAL TEST DATA: WATER LEACHABLE SUBSTANCES

Determinand	No of Tests	Concentrat	ion (µg/I)	Published Environmental Quality Standard (as listed in the Notes)		
		Min	Max	Value (µg/l)	No > Value ⁴	
Arsenic	6	<1.0	7	10 ¹	0	
Cadmium	6	<0.08	<0.08	3.0 1	0	
Chromium	6	<0.4	3.5	50 ¹	0	
Lead	6	<1.0	15	10 1	1 ²	
Mercury	6	<0.5	<0.5	1.0 ¹	0	
Copper	6	7.3	72	2,000 ¹	0	
Zinc	6	4.3	56	125 ¹	0	
Selenium	6	<4.0	<4.0	10 ²	0	

NOTES

- 1. WHO (2022) Guidelines for drinking-water quality.
- 2. Value marginally exceeds WHO value at one location only and as associated with a small volume of potential source soil material.

ASSESSMENT OF CONTAMINANT LINKAGES

NOTES:

- 1. Contaminant linkage validity assessed following qualitative or semi-quantitative risk assessment.
- 2. Contaminant linkage assessed following detailed quantitative risk assessment or assuming the recommended remediation or mitigation measures are in place.

		Consequence (C)							
		Severe	Medium	Mild	Minor				
	High likelihood (HL)	Very High Risk	High Risk	Moderate Risk	Moderate/ Low Risk				
(b)	Likely (L)	High Risk	Moderate Risk	Moderate/ Low Risk	Low Risk				
ability	Low likelihood (LL)	Moderate Risk	Moderate/ Low Risk	Low Risk	Very Low Risk				
Prob	Unlikely (UL)	Moderate/ Low Risk	Low Risk	Very Low Risk	Very Low Risk				

Contaminant Linkage		Assessment of Contaminant Linkage following	Contaminant	nant F		ing		Recommended		Contaminant	
Source	Pathway	Receptor	Ground Investigation	Linkage Valid? ¹	С	Р	Risk	Quantitative Risk Assessment	Remediation/Mitigation (See Section 7 for further details)	Recommended Work Verified?	Linkage Valid? ²
Toxic metals PAHs Petroleum Hydrocarbons SVOCs	Ingestion (dust), Dermal (dust) Inhalation (dust), Inhalation (vapour)	End Users	All concentrations below GAC/C4SL values	No	N/A	N/A	N/A	Not applicable	Not required	Not applicable	No
Asbestos			No asbestos identified	No	N/A	N/A	N/A				
Toxic metals PAHs Petroleum Hydrocarbons SVOCs	Dermal contact, Ingestion, Inhalation	Construction workers	All potential contaminants identified in concentrations below short-term (acute) exposure limits	No	N/A	N/A	N/A	Not applicable	Not applicable but standard personal protective equipment is recommended as good practice. Conventional dust control and soil dampening to be used during construction.	To be confirmed during construction stage	No
Asbestos			No asbestos identified	No	N/A	N/A	N/A				
Toxic metals PAHs Petroleum Hydrocarbons SVOCs	Dermal contact (dust), Ingestion (dust), Inhalation (dust)	Neighbours/general public	All concentrations below GAC/C4SL values	No	N/A	N/A	N/A	Not applicable	Not required but dust suppression techniques should be used during construction in line with good practice.	To be confirmed during construction stage	No
Asbestos			No asbestos identified	No	N/A	N/A	N/A				
Organic compounds	Chemical permeation/direct contact	Potable water pipes	No significant organic compounds detected.	Yes	Med	UL	Very Low	Not applicable	At this stage, allowance to be made for multi-layer barrier pipe or other protective pipe material to be used for potable water supply.	To be confirmed during construction phase	No
Phytotoxic metals	Plant uptake	Landscape areas	No significant concentrations identified	No	N/A	N/A	N/A	Not applicable	Not required	Not applicable	No
Toxic metals Organic compounds	Leaching from soil source into groundwater at depth	Groundwater Resources: Zone 3 Source Protection Zone	No significant concentrations identified Significant unsaturated zone will aid dispersion	No	N/A	N/A	N/A	Not applicable	Not required	Not applicable	No
Radon	Migration through floor slab and subsequent Inhalation	End Users	Building located within area where basic radon precautions are required	Yes	Yes	Med	LL	Not applicable	Basic radon-protection measures are required within the new buildings.	To be confirmed during construction phase.	No

All terminology in accordance with the definitions provided in CIRIA C552 (2001)

APPENDIX I

SUMMARY OF SOAKAWAY TEST RESULTS

Test Location	Soil Infiltration Rate (m/s)	Remarks
TP1: test 1	2 x 10 ⁻⁵	
TP1: test 2	4 x 10 ⁻⁵	
TP1: test 3	2 x 10 ⁻⁵	Estimated value
TP2: test 1	3 x 10 ⁻⁵	
TP2: test 2	4 x 10 ⁻⁵	
TP2: test 3	3 x 10 ⁻⁵	
SA101 test 1 SA101 test 2 SA102 test 1 SA102 test 2 SA102 test 3	3 x 10 ⁻⁵ 3 x 10 ⁻⁶ 6 x 10 ⁻⁵ 2 x 10 ⁻⁵ 1 x 10 ⁻⁵	Values from adjoining site (for reference only)

NOTES:

- 1. Tests undertaken in trial pits of 1.8 m and 2.0 m depth in weathered Boyne Hollow Chert Formation strata (gravelly sands/sandy gravels with some silty clay pockets/inclusions).
- 2. Soakaway tests undertaken in compliance with BRE DG365 (2016), apart from TP 1: test 3 see below.
- 3. TP 1: test 3 constrained by site access and terminated after 35 mins providing an estimated infiltration value.
- 4. No groundwater observed within 5 m of ground surface within site during fieldwork period. No groundwater recorded within 4 m of surface during monitoring period: 08.11.2018 to 04.12.2018.

TRIAL PIT RECORDS

<u>KEY</u>

		J	Disturbed Jar Sample					
		G	Soil Sample in Glass Container	Category B				
		g	Soil Sample in Glass Vial	Samples				
		В	Disturbed Bulk Sample					
		С	"Undisturbed" CBR Mould Sample (denoted Category A: OS-TK/W in BS EN 22475-1:2006)					
	W Water Sample							
ſ		C _{fv}	Undrained Shear Strength (from hand vane shear vane test)					
FVT {	ļ	C _{rv}	Undrained Remoulded Shear Strength (from hand vane shear vane test)					
	C _{fv} *		Undrained Shear Strength from Hand Vane Shear Strength Test on block sample dug from pit by excavator					

Notes:

- 1. All measurement values on record sheets are uncorrected, unless otherwise indicated.
- 2. For corrected test values, refer to report.
- Identification and classification of strata is based on the guidance published in the current edition of BS5930 together with BS EN ISO 14688-1:2002, BS EN ISO 14688-2:2004, BS EN ISO 14689-1:2003
- 4. Consistency (soft, firm, stiff etc.) relates to a manual test/inspection on site (in compliance with BS EN ISO 14688-1:2002 Section 5.14)
- Undrained shear strength (low, medium, high etc.) relates to in situ or laboratory test data and the associated assessed strength of a stratum (in compliance with BS EN ISO 14688-2:2004 Section 5.3 and Table 5).
- 6. The density of coarse-grained soils is based on SPT N values (or equivalent Dynamic Probe test or CPT data) as outlined in BS5930 and BS EN ISO 14688-2:2004.
- 7. Rock strength (weak, strong etc.) is based on field identification (and/or strength test data), as outlined in BS EN ISO 14689-1:2003 Table 5.
| | Cr | 'nss | fiel | 2 | | Trial Pit Record Sheet | | Hole Ref. | TP1 | | |
|-----------|-----------|-----------|----------|----------|-----------|---|-----------------|------------------------|----------------|---------------------------|----------|
| | | | | G | Project | Land off Christy's Lane, Shaftesbury | | Sheet | 1 of 1 | | |
| | GEOTEC | HNICAL E | VIRONME | NTAL | Date | 04/05/2023 | | Job No. | CCL03657 | | |
| Bea | aring: | Northeast | | | Shoring | None used | | Ground Level | | m OD | |
| Pla | nt | CAT 304 | | | Stability | Sides vertical and stable throughout excavation | | Co-ordinates | | | |
| Tri | al Pit | | A | | | | | Logged by | GK | Logged on | |
| Pla | n | | - | В | Water | None encountered | | Checked by | | site during
excavation | |
| | | L |]
C | | | | | | | | |
| | Depth | | F | ace A | | Face B | | Face C | | Depth | 1 |
| | | | | | | (1) | | | | | |
| Η | 0.15 | | | | | | | | | 0.15 | - |
| | | | | | | (2) | | | | | |
| | 0.50 | | | | | | | | | 0.50 | |
| | | | | | | | | | | | |
| \vdash | | | | | | (3) | | | | | _ |
| | | | | | | | | | | | |
| \vdash | 1.10 | | | | | | | | | 1.10 | |
| H | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | (4) | | | | | |
| \square | | | | | | | | | | | |
| _ | | | | | | | | | | | |
| | 2.00 | | | | | | | | | 2.00 | |
| H | | | | | | Base of Pit | | | | | |
| П | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| Η | | | | | | | | | | | - |
| | | | | | | | | | | | |
| | | | | | | | | | | | _ |
| | | | | | | | | | | | |
| — | | | | | | | | | | | _ |
| | | | | | | | | | | | |
| Sar | npling | - | | Strata | | I- | | | | | |
| Sa | nple/Test | Туре | Strength | Ref. No. | Strata | Description | | | | | |
| | Deptil | | (KN/M) | 1 | 0.00-0.15 | Brown sandy gravel. Gravel is fine to co | arse subangu | lar | | | |
| | | | | | | (MADE GROUND) | 0 | | | | |
| | | | | | | | | | | | |
| | 0.40 | J | | 2 | 0.15-0.50 | Firm consistency black to grey slightly s | andy silty clay | / | | | |
| | | | | | | (MADE GROUND) | | | | | |
| | 0.80 | J | | 3 | 0.50-1.10 | Grey to greenish brown silty sandy GRA | VEL with high | n cobble content. Gra | vel is fine to | coarse | |
| | | | | | | subangular | | | | | |
| | | | | | | (BOYNE HOLLOW CHERT MEMBER) | | | | | |
| | 1 20 | | | Д | 1 10-2 00 | Greenish grey to brown gravelly SAND | with silty clay | inclusions. Gravel is | fine to coars | ۵ | |
| | 1.80 | J | | - | 1.10 2.00 | subangular | with sincy city | | | C | |
| | | | | | | (BOYNE HOLLOW CHERT MEMBER) | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | ļ | | | | | |
| Re | marks | | | | | Notes | and correl! | ng in accordance | h BC E020-24 | 115 - 41-20 | 20 |
| | | | | | | 1. All loggin
2. Symbols | and abbrevia | tions are explained o | n the accom | pio+A1:20.
Ipanving ke | 20
2V |
| | | | | | | 3. All linear | dimensions a | are in metres unless o | otherwise sta | ated | , |

	Crossfield			2		Trial Pit Record Sheet	Hole Ref. TP2				
				G	Project	Land off Christy's Lane, Shaftesbury		Sheet	1 of 1		
	GEOTEC	HNICAL E	VIRONME	NTAL	Date	04/05/2023		Job No.	CCL03657		
Be	aring:	Southeast			Shoring	None used		Ground Level		m OD	
Pla	nt	CAT 304			Stability	Sides vertical and stable throughout excavation		Co-ordinates			
Tri	al Pit		A					Logged by	GK	Logged on	
Pla	n		-	В	Water	None encountered		Checked by		site during	
										cxcavation	
	Depth		F	ace A		Face B		Face C		Depth	
	-										
	0.25					(1)				0.25	_
	0.25									0.25	
	0.60					(2)				0.60	
	0.60									0.60	F
\vdash						(3)					H
	1.80					Pace of Dit				1.80	
						Base of Pit					
											⊢
											_
											\vdash
Sa	npling			Strata							
Sa	mple/Test	Туре	Strength	Ref. No.	Strata	Description					
	Depth		(kN/m ²)		Depth						
				1	0.00-0.25	Reddish brown sandy gravel. Gravel is (MADE GROUND)	fine to coarse	subangular			
	0.50	J		2	0.25-0.60	Firm to stiff consistency blackish brow (MADE GROUND)	n slightly sand	y silty clay			
	0.70 0.90 1.40	JGg J J		3	0.60-1.80	Brown sandy GRAVEL with high cobble coarse subangular (BOYNE HOLLOW CHERT MEMBER)	e content and s	andstone lithorelic	.s. Gravel is fin	e to	
Do	marke					Notos					
e						1. All loggi 2. Symbol: 3. All linea	ing and sampli s and abbrevia ar dimensions a	ng in accordance w tions are explained are in metres unless	ith BS 5930:20 on the accom s otherwise sta	015+A1:20 Ipanying ke ated	20 9y

	Cr	Crossfield			Trial Pit Record Sheet			Hole Ref.	TP3	
					Project	Land off Christy's Lane, Shaftesbury		Sheet	1 of 1	
	GEOTEC	CHNICAL EN	VIRONME	NTAL	Date	04/05/2023		Job No.	CCL03657	,
Be	aring:	Southeast			Shoring	None used		Ground Level		m OD
Pla	nt	CAT 304			Stability	Sides vertical and stable throughout ex	cavation	Co-ordinates		
Tri	al Pit		4		İ			Logged by	GK	Logged on
Pla	in		-	В	Water	None encountered		Checked by		site during excavation
] r							
	Depth		E F	ace A		Face B		Face C		Depth
						(1)				
	0.15					(-)				0.15
	0.40					(2)				0.40
						(2)				
						(3)				
	1 30									1 30
	1.50									1.50
	1 60					(4)				1.60
	1.00					Base of Pit				1.00
										_
Sai	nnling			Strata						
Sa	mple/Test	Туре	Strength	Ref. No.	Strata	Description				
	Depth		(kN/m ²)		Depth					
				1	0.00-0.15	Brown sandy gravel. Gravel is fine to co (MADE GROUND)	oarse subangu	ılar		
				2	0.15-0.40	Firm to stiff consistency blackish browr (MADE GROUND)	n silty sandy cl	ay		
				3	0.40-1.30	Yellowish brown silty sandy GRAVEL wi (BOYNE HOLLOW CHERT MEMBER)	ith high cobble	e content. Gravel is	fine to coarse	e subangular
				4	1.30-1.60	Greyish brown gravelly sand with high chert (BOYNE HOLLOW CHERT MEMBER)	cobble conter	nt. Gravel is fine to o	coarse subang	gular of
Re	marks					Notes				
Tri	al pit term	inated due	to dense st	trata/layer		1. All loggir 2. Symbols 3. All linear	ng and sampli and abbrevia r dimensions a	ng in accordance w tions are explained are in metres unless	ith BS 5930:20 on the accom otherwise sta	015+A1:2020 npanying key ated

	Crossfield			1		Trial Pit Record Sheet	Hole Ref. TP4				
					Project	Land off Christy's Lane, Shaftesbury		Sheet 1 of 1			
	GEOTEC	CHNICAL EN	VIRONME	NTAL	Date	04/05/2023		Job No.	CCL03657		
Be	aring:	Northeast			Shoring	None used		Ground Level		m OD	
Pla	nt	CAT 304			Stability	Sides vertical and stable throughout excavation		Co-ordinates			
Tri	al Pit	,	A					Logged by	GK	Logged on	
Pla	n		-	В	Water	None encountered		Checked by		site during	
										excuvation	
	Depth		C F	ace A		Face B		Face C		Depth	
\square											
Н											
Ħ						(1)					
	0.60									0.60	
	0.00									0.80	
\square											
						(2)					
\square						(2)					
Η											
	1.40									1.40	
\square											
Н						(3)					
Η											
Ħ	2.30									2.30	
	2 50					(4)				2 50	
	2.50					Base of Pit				2.50	
μ											
H											
H											
Sar	npling			Strata							
Sa	mple/Test	Туре	Strength	Ref. No.	Strata	Description					
_	Depth	10-	(kN/m²)	1	Depth						
	0.40	JGg		1	0.00-0.60	subangular	with rare brid	ck fragments. Grave	el is fine to coa	arse	
						(IVIADE GROUND)					
	0.70	J		2	0.60-1.40	Brown slightly clayey silty sandy GRAVE	EL with high co	obble content. Grav	el is fine to co	arse	
	1.30	J				subangular	Ū				
						(BOYNE HOLLOW CHERT MEMBER)					
	1 00			2	1 10-2 20	Greenish grow to brown silty growelly S/		cobble content and	l condistana lit	horolics	
	1.90	J		5	1.40-2.50	Gravel is fine to coarse subangular		cobble content and	i sanustone ni	norencs.	
						(BOYNE HOLLOW CHERT MEMBER)					
	2.40	J		4	2.30-2.50	Greenish grey extremely weak SANDST	ONE				
						DUTINE HULLOW CHERT MEMBER)					
1											
Re	marks	ļ	ļ			Notos					_
						1. All loggir	ng and sampli	ng in accordance w	ith BS 5930:20	015+A1:202	20
						2. Symbols	and abbrevia	tions are explained	on the accom	ipanying ke	y
1						3. All linear	r dimensions a	are in metres unless	otherwise st	ated	

Crossfield		In Situ	Hole Ref. TP1	
Crossi	iela	Project: Land off Christy's Lane	. Shaftesbury	Sheet 1 of 2
CONSUL	TING			Job No. CCL03657
GEOTECHNICAL ENVIR	CONMENIAL	Date: 04/05/2023		Test by: GK
				Checked by:
Trial Dit 1	Tost	1		
	Test	-		
Depth		2.00 m		
Length		1.50 m		
Width		0.60 m		
Depth to water at start	of test	1.00 m		
Max Effective Depth		1.00 m		
75% Effective Depth		0.75 m		
25% Effective Depth		0.25 m		
Water Level Measurer	onts			
	Time	Depth to Water	Effective	
Time at	(Minutes)	(metres)	Depth (m)	
Start of Test	, , , , , , , , , , , , , , , , , , ,	(, , , , , , , , , , , , , , , , , , ,		
10:57	0	1.00	1.00	
	5	1.10	0.90	
	10	1.18	0.82	
	20	1.27	0.73	
	35	1.38	0.62	
	60	1.48	0.52	
	90	1.59	0.41	
	115	1.68	0.32	
	135	1.//	0.23	
75% Effective Depth	- 14	-	0.75	
25% Effective Depth	- 130	-	0.25	
Outflow Volume				
Volume outflowing b	etween 75% 8	25% effective depth:		
V 0.45	3			
$V_{p75} = 0.45$	m			
The mean surface are	a through wh	ich the outflow occurs tak	an to be the nit sides to 500	2/
effective denth and t	ho haso		en to be the pit sides to 50	/0
	ne base.			
a neo = 3.00	m ²			
p30				
Time for outflow				
tp = 116	mins			
Soil Infiltration Rate		$f = V_{p75} / a_{p50}$	* tp	
as defined in				
BRE DG365 (2016)		f = 2.2E-05 m/sec		
1				

	1 1		ln Si	tu Porcolation Tost	Hole Ref.	TD1
Crossfi	ed		111 31			
	ING	Project: La	nd off Christy's L	ane, Shaftesbury	Sheet	1 of 2
GEOTECHNICAL ENVIR	ONMENTAL				Job No.	CCL03657
		Date: 05	5/04/2023		Test by:	GK
					Checked by:	
Trial Pit 1	Test	2				
Depth			2.00 m			
Length			1.50 m			
Width			0.60 m			
Donth to water at start	ftact		1.00 m			
Max Effective Depth	Ditest		1.00 m			
75% Effective Depth			0.75 m			
25% Effective Depth			0.25 m			
Water Level Measurem	ents					
	Time	Dep	th to Water	Effective		
Time at	(Minutes)		(metres)	Depth (m)		
Start of Test	_					
13:15	0		1.00	1.00		
	5		1.04	0.96		
	20 60		1.17	0.83		
	90		1.51	0.45		
	100		1.79	0.21		
75% Effective Denth	20			0.75		
75% Effective Depth -	30		-	0.75		
25% Effective Deptil -	90		-	0.25		
Outflow Volume						
Volume outflowing be	tween 75% 8	25% effec	tive depth:			
V _{p75} = 0.45	m ³					
-						
The mean surface are	a through wh	ich the out	tiow occurs, t	aken to be the pit sides to 50%		
enective depth and th	ie base.					
a = 3.00	m ²					
- pso						
Time for outflow						
tp = 66	mins					
Soil Infiltration Rate		t =	V _{p75} / a _p	₅₀ * tp		
as defined in			2.05.05			
BRE DG365 (2016)		r =	3.8E-05 m/	Sec		

		1						
Crossfield			li li	n Situ Per	colation Test		Hole Ref.	TP1
C105511	Project: L	and off Christ	ty's Lane, Shaf	tesbury		Sheet	1 of 2	
CONSULT	ING						Job No.	CCL03657
GEOTECHNICAL ENVIRO	DNMENTAL	Date: 0	5/04/2023				Test hv	GK
			5, 6 ., 2020				Chacked by	
							Checked by.	
Trial Pit 1	Test	3						
			2.00					
Depth			2.00	m				
Length			1.50	m				
Width			0.60	m				
Dopth to water at start o	ftort		1 00	m				
May Effective Donth	Tiest		1.00					
75% Effective Depth			1.00					
75% Effective Depth			0.75					
25% Effective Depth			0.25	m				
Water Level Measureme	ents							
	Time	Dei	oth to Wat	er	Effective			
Time at	(Minutes)	-1	(metres)	-	Depth (m)			
Start of Test	((- op ()			
14.57	0		1 00		1 00			
1107	5		1 04		0.96			
	35		1 29		0.71			
	55		1.25		0.71			
75% Effective Denth -	29		_		0.75			
25% Effective Depth -	1/13		_		0.75			
25% Effective Deptil	145				0.25			
Outflow Volume								
Volume outflowing be	tween 75% 8	25% effe	ctive dept	h:				
V _{p75} = 0.45	m ³							
The mean surface area	hthrough wh	ich the ou	tflow occu	ırs, taken to	be the pit sides to !	50%		
effective depth and th	e base.							
a _{p50} = 3.00	m²							
Time for outflow								
tp = 114	mins							
Sail Infiltration Data		f _	V /	o *+∽				
		· -	v _{p75} ∕	α _{p50} · ιρ				
as defined in				,	N			
BRE DG365 (2016)		r =	2.2E-05	m/sec	Note: estimated va	aiue		
1							Î	

\bigcirc	· 11		In	Situ Percolation Test	t	Hole Ref.	TP2
Crosst	ield	Proiect:	and off Christ	y's Lane. Shaftesbury	-	Sheet	1 of 2
CONSUL	CONSULTING GEOTECHNICAL ENVIRONMENTAL			,,,		Job No.	CCL03657
GEOTECHNICAL ENV	IRONMENTAL	Date: (14/05/2023			Test hv:	GK
		Dute.	,05,2025			Chockod by:	
						Checked by:	
Trial Pit 2	Test	1					
Depth			1.80	m			
Length			1.80	m			
width			0.00	111			
Depth to water at star	t of test		0.95	m			
Max Effective Depth			0.85	m			
75% Effective Depth			0.64	m			
25% Effective Depth			0.21	m			
Water Level Measure	ments						
	Time	De	pth to Wate	er Effective			
Time at	(Minutes)		(metres)	Depth (m)			
Start of Test	0		0.05	0.95			
10.56	5		1 11	0.65			
	10		1.25	0.55			
	15		1.33	0.47			
	25		1.42	0.38			
	40		1.48	0.32			
	55		1.52	0.28			
	80		1.57	0.23			
	110		1.64	0.16			
75% Effective Depth	- 6		-	0.64			
25% Effective Depth	- 85		-	0.21			
Outflow Volume							
Volume outflowing	between 75% 8	25% effe	ective depth	1:			
	3						
$V_{p75} = 0.46$	m						
The mean surface a	rea through wh	ich the ou	utflow occu	rs taken to be the nit side	s to 50%		
effective denth and	the hase			is, taken to be the pit side	3 10 3078		
	the base.						
a _{n50} = 3.12	m ²						
, poo							
Time for outflow							
tp = 79	mins						
Soil Infiltration Rate	2	f =	V _{p75} /	a _{p50} * tp			
as defined in			2 45 05				
вке DG365 (2016)		т =	3.1E-05	m/sec			
1							

Crossfield	In Situ Percolation Test					Hole Ref. TP2		
Crossf	ield	Project: La	and off Chris	sty's Lane, Shaft	esbury		Sheet	1 of 2
CONSUL	CONSULTING GEOTECHNICAL ENVIRONMENTAL			, .			Job No.	CCL03657
GEOTECHNICAL ENVIR	ONMENTAL	Date: 04	4/05/2023				Test by:	GK
			,,				Checked by:	
							· · · · · ,	
Trial Dit 2	Tost	2						
	1050	2						
Depth			1.80) m				
Length			1.80) m				
Width			0.60) m				
	- f + +		0.00					
Depth to water at start	oftest		0.90) m) m				
75% Effective Depth			0.90	R m				
25% Effective Depth			0.23	3 m				
Water Level Measurem	ients							
	Time	Dep	oth to Wa	ter	Effective			
Time at	(Minutes)		(metres)		Depth (m)			
Start of Test	0		0.00		0.00			
12.50	5		1.05		0.90			
	20		1.23		0.57			
	40		1.45		0.35			
	60		1.52		0.28			
	80		1.57		0.23			
	90		1.60		0.20			
75% Effective Depth	· 10		-		0.68			
25% Effective Depth	- 77		-		0.23			
Outflow Volume								
Volume outflowing b	etween 75% 8	25% effe	ctive dep	th:				
V _{p75} = 0.49	m³							
T he sum of a second s								
The mean surface are	ea through wh	ich the ou	tflow occ	urs, taken to	be the pit sides i	to 50%		
enective depth and t	ne base.							
a _{n50} = 3.24	m ²							
,								
Time for outflow								
tp = 67	mins							
Soil Infiltration Rate		f =	V /	a * tn				
as defined in		. –	•p75 /	ч _{р50} чр				
BRE DG365 (2016)		f =	3.7E-05	5 m/sec				
1								

Crossfield		In Sit	Hole Ref. TP2	
Crossi	leia	Project: Land off Christy's Lan	ne, Shaftesbury	Sheet 1 of 2
				Job No. CCL03657
GEOTECHNICAL ENVIR	ORMERIAL	Date: 04/05/2023		Test by: GK
				Checked by:
Trial Pit 2	Test	3		
Depth		1.80 m		
Length		1.80 m		
wiath		0.00 11		
Depth to water at start of	of test	0.90 m		
Max Effective Depth		0.90 m		
75% Effective Depth		0.68 m		
25% Effective Depth		0.23 m		
Mator Loval Massuram	onto			
water Level Measurem	Time	Depth to Water	Effective	
Time at	(Minutes)	(metres)	Depth (m)	
Start of Test	(,	, , , , , , , , , , , , , , , , , , ,		
14:05	0	0.90	0.90	
	5	1.12	0.68	
	25	1.34	0.46	
	40 60	1.43	0.37	
	100	1.56	0.24	
	115	1.60	0.20	
	135	1.62	0.18	
75% Effective Depth -	5	-	0.68	
25% Effective Depth -	100	-	0.23	
Outflow Volume				
Volume outflowing be	otween 75% &	25% effective denth		
V _{p75} = 0.49	m³			
The mean surface are	a through wh	ich the outflow occurs, ta	ken to be the pit sides to 50	%
effective depth and th	ne base.			
$a_{p50} = 3.24$	m ²			
Time for outflow				
tp = 95	mins			
Soil Infiltration Rate		$f = V_{p75} / a_{p5}$	₀ * tp	
as defined in				
BRE DG365 (2016)		t = 2.6E-05 m/s	ec	

DYNAMIC SAMPLE RECORDS

KEY

Sampling

J	Disturbed Jar Sample
G	Jar Sample in Glass Container
g	Soil Sample in Glass Vial
W	Water Sample
IC	Nett sample recovery ratio (ratio of length of recovered sample to
	length of sample run)

In Situ Measurements

	C fv	Undrained Shear Strength (from hand vane shear vane test)
	Crv	Undrained Remoulded Shear Strength
FVT	J	(from hand vane shear vane test)
	Cfv *	Hand Vane Shear Strength Test (on Category A: OS-TK/W
		soil sample recovered in window sampler)
	ls	Standard Penetration Test (SPT: split spoon sampler)
	SPT(C)	SPT carried out with a 60° cone
	'N'	'N' Value from SPT test
	N ₁₀	Dynamic Probe Test: Number of blows to drive 100 mm
DPH	N _{H10}	Dynamic Probe Test: Heavy (30 kg mass & 500 mm fall)
DPSH-A	N _{SHA10}	Dynamic Probe Test: Super-Heavy A (63.5 kg mass & 500 mm fall)
DPSH-B	N _{SHB10}	Dynamic Probe Test: Super-Heavy B (63.5 kg mass & 750 mm fall)
	x	x Blows per y Driving Distance (for non-standard SPT or DP driving distance)
	y mm	
	Т	Torque (max) required to turn rods (unit: Nm, unless otherwise shown)

Notes:

- 1. All measurement values on record sheets are uncorrected, unless otherwise indicated.
- 2. For corrected test values, refer to report.
- Identification and classification of strata is based on the guidance published in the current edition of BS5930 together with BS EN ISO 14688-1:2002, BS EN ISO 14688-2:2004 and BS EN ISO 14689-1:2003
- 4. Consistency (soft, firm, stiff etc) relates to a manual test/inspection on site (in compliance with BS EN ISO 14688-1:2002 Section 5.14).
- 5. Undrained shear strength (low, medium, high etc) relates to in situ or laboratory test data and the associated assessed strength of a stratum (in compliance with BS EN ISO 14688-2:2004 Section 5.3 and Table 5).
- 6. The density of coarse-grained soils is based on SPT N values (or equivalent Dynamic Probe test or CPT data) as outlined in BS5930 and BS EN ISO 14688-2:2004.
- 7. Rock strength (weak, strong etc) is based on field identification (and/or strength test data), as outlined in BS EN ISO 14689-1:2003 Table 5.

BOREHOLE & DRILLHOLE RECORDS - LEGENDS KEY SHEET

Soil Rock Sedimentary Igneous Metamorphic imes \sim Fine-grained Made Ground Mudstone Fine-grained +++++ ++<u>+++</u> Clay Shale Medium-grained Medium-grained XXXXX +++++ -+++ × × _× × Silt Coarse-grained Siltstone Coarse-grained Sand Sandstone 0000 Gravel Limestone <u>... ...</u> Peat/Topsoil Chalk <u>...</u>..<u>..</u>/ Organic Sand Coal $\circ \circ \circ \circ$ **Organic Clay** Conglomerate

Legend - Strata Encountered in Exploratory Hole

Legend - Backfill to Borehole and Standpipe Installations

Notes:

1. A combination of the strata symbols are indicative of mixed soil types.

2. The response zone of a standpipe refers to the section of perforated pipe within a granular surround, where substances may freely enter the standpipe from the surrounding strata.

C	ros	sefi		1		Dynamic S	ample Rec	ord Sheet	Hole Ref.		DS1	
	100			G	Project:	Land off Christy	's Lane, Shaftest	oury	Sheet		1 of 1	
GEOTI	ECHNICA	L ENVIR	ONMENT	AL	Date:	04/05/2023			Job No.		CCL03657	
Contractor		RGI Ltd			Equipment	Premier Compa	oct 110		Ground Lev	vel.		m OD
Method		0.0 m to	1.0 m dy	/namic sa	ampling				Co-ordinate	es		
Boring Diar	meter	100 mm							Logged by:	GK	Logged on sit drilling opera	e during
									Checked by	:	0.000	
Sample	Sample	Casing	Water	Test	Description				Depth	Legend	Backfill	Level
Depth	or Test	Depth	Depth	Value								0.D.
					Grey sandy fine to (MADE GROUND)	coarse sub-ang	ular gravel surfa	cing	0.15	\rightarrow		
0.30	GgJ				Firm consistency b	orown slightly gr	avelly silty clay v	vith brick fragments. Gravel is	1 [X		
					fine to coarse sub (MADE GROUND)	angular			0.50			
					Very dense greeni	sh grey to brow	n sandy clayey fi	ne to coarse sub-angular GRAVEL	0.50			
0.70	J				(BOYNE HOLLOW	CHERT MEMBER	R)					
1.00-1.43	S	-	-	<u>N=50</u>					1.00			
				275 mm		En	id of Hole					
									-			
										_		
									-			
										_		
									-			
									-	_		
	Core Rec	covery				Gro	oundwater			Additiona	l Tests	
Dep	th	Reco	overy		Hole Depth	Strike Depth	Water Depth	Observations	Test type	Test Depth	Test V	alue
0.00-1	L.00	10	0%		1.00	-	-					
Remarks		1					Notes		1	1	1	
Further pro	ogress pre	cluded b	y very de	ense stra	ta		1. All logging an	d sampling in accordance with BS	5930:2015+	-A1:2020		
							2. The depths to	o strata change are approximate o	only			
							3. Symbols and	abbreviations are explained on the	e accompan	ying key		
							 An intear dim Undrained sh 	ensions are in metres unless othe lear strength test value given in k	n wise stated N/m ²			

Crossfield CONSULTING The Granary, White Hall Farm, Long Itchington, Warwickshire, CV47 9PU, t: 01926815678, e: mail@crossfield-consulting.co.uk

Crossfield					Dynamic Sample Record Sheet			Hole Ref. DS2					
				G	Project:	Land off Christy	/'s Lane, Shaftest	oury	Sheet			1 of 1	
GEOT	ECHNICA	LENVIR	ONMENT	AL	Date:	04/05/2023			Job No.			CCL03657	
Contractor		RGI Ltd			Equipment	Premier Compa	act 110		Ground L	evel	•		m OD
Method		0.0 m to	1.0 m dy	namic sa	Impling				Co-ordina	ates			
Boring Dia	meter	100 mm							Logged b	y:	GK	Logged on sit	e during
									Checked	by:		drilling opera	tions
Sample	Sample	Casing	Water	Test	Description				Depth		Legend	Backfill	Level
Depth	or Test	Depth	Depth	Value									0.D.
					Grey sandy coarse	sub-angular gra	avel surfacing (M	ADE GROUND)	0.10		$\times\!$	/////	
					Stiff consistency b	rown sandy silty	/ clay				>>>		
0.40	GgJ				(MADE GROUND)						\Longrightarrow		
											$\times\!$		
0.70					Firm to stiff consis	to nov grovich h	aun aliabtlu arau	under ander CLAY/vorsi danse	0.60		$\lambda \geq$		
0.70	J				slightly gravelly ve	ry clayey SAND	own siignuy grav	veny very sandy CLAY/very dense					
					(BOYNE HOLLOW	CHERT MEMBER	R)				<u>0.0</u>		
1.00-1.33	S	-	-	<u>N=50</u> 180 mm		En			1.00		•	/////	
				100 11111		EI							
										H			
										\vdash			
	Core Rec	overv				Gro	oundwater				Additional	Tests	
Dep	th	Reco	overy		Hole Depth	Strike Depth	Water Depth	Observations	Test typ	be	Test Depth	Test V	alue
0.00-:	1.00	10	0%		1.00	-	-						
Remarks	arooo	ماريم م ال		ncc et			Notes	d compling in accordance with DC	E020-201	c · • •	1.2020		
Further pro	gress pre	ciuaed b	y very de	inse strat	.d		1. All logging an	iu sampling in accordance with BS	วรรบ:201 mly	з+А́:	1:2020		
							3. Symbols and	abbreviations are explained on th	ie accomn	anvi	ng kev		
							4. All linear dim	ensions are in metres unless othe	rwise stat	ed	0		
	manft	14 CON		Th - 0	non, W/L	arm Level L	5. Undrained sh	lear strength test value given in ki	V/m ²		old come lit	ag en 111	
	-rossile	111 UN	JULHN(> ine Gra	mary, white Hall F	arm, Long Itchin	i gton, Warwicksh	nre, cv47 9r0, t: 01926815678, e:	: mail@cr e	JSSTIC	eia consultii	ig.co.uk	

C	ros	sefi	iel	1		Dynamic S	Sample Rec	ord Sheet	Hole Ref.		DS3	
				G	Project:	Land off Christy	y's Lane, Shaftest	oury	Sheet		1 of 1	ľ
GEOT	ECHNICA		ONMENT	AL	Date:	04/05/2023			Job No.		CCL03657	
Contractor		RGI Ltd			Equipment	Premier Compa	act 110		Ground Leve	el.		m OD
Method		0.0 m to	5.0 m dy	namic sa	ampling				Co-ordinate	s		
Boring Dia	meter	100 mm							Logged by:	GK	Logged on sit	e during
Ū									Checked by:		drilling opera	tions
Sample	Sample	Casing	Water	Test	Description				Denth	Legend	Backfill	Level
Dauth	Sample	Dauth	Dauth	Value	Description				Deptil	Legenu	Dackilli	
Depth	or rest	Depth	Depth	value								0.D.
					Multi-coloured fir	he to coarse sub-	-angular to sub-r	ounded gravel surfacing with	-	\sim	30 00	
					(MADE GROUND)				0.30	\times		
0.40	GgJ				Firm consistency	brown sandy cla	у			XX		
					(MADE GROUND)				0.50	\searrow		
0.60	J				Medium dense gr	eenish grey sligh	ntly clayey sandy	fine to coarse sub-angular	-			
					GRAVEL	CHERT MEMBER	8)		-			
							-,			<u> </u>		
1.00-1.45	S	-	-	N=16						• <u>•</u> ••		
1.00	J								-			
									_			
1.60	J								1.50	<u></u>		
					Firm to stiff consis	stency slightly gr	avelly very sand	y CLAY/medium dense slightly	_			
					gravelly very claye	ey SAND CHERT MEMBER	2)		-			
							()					
2.00-2.45	s	-	-	N=12								
										<u>•</u> •••		
									2 20			
					Firm to stiff and s	tiff consistency b	prown slightly gra	avelly very sandy CLAY/medium	2.50			
2.50	J				dense slightly grav	velly very clayey	SAND			<u> </u>		
					(BOYNE HOLLOW	CHERT MEMBER	R)					
									_			
									-			
3.00-3.45	s	-	-	N=20								
									-			
									3.50			
					Medium dense gr	eyish brown clay	yey sandy fine to	coarse sub-angular GRAVEL with	1 🗆	<u>0.0</u>		
					chert					<u>•</u>		
4.00-4.45	s	-	-	N=29								
										· <u>··</u> ·		
									-			
									-	<u>نې کې</u>		
5.00-5.45	s	-	-	N=14		-	End of Hole		5.00			
	Core Rec	overy				Gro	oundwater		5.00	Additiona	l Tests	
Dep	th	Reco	overy		Hole Depth	Strike Depth	Water Depth	Observations	Test type	Test Depth	Test Va	alue
0.00-2	1.00	10	0%		5.00	-	-					I
1.00-2	2.00	80	J%									
2.00-3	3.UU 1.00	80	J%]%									
3.00-4 4.00-4	5.00	61	5%									
-1.00		0.								1		
Remarks							Notes					
							1. All logging an	d sampling in accordance with BS	5930:2015+/	41:2020		
							2. The depths to	o strata change are approximate o	only			
							3. Symbols and	abbreviations are explained on th	ne accompany	ing key		
							4. All linear dim	ensions are in metres unless othe	erwise stated			
L (Crossfie	ld CON	ISULTING	Fine Gra	anary, White Hall F	arm, Long Itchin	5. Undrained sh gton, Warwicksh	iear strength test value given in k h ire, CV47 9PU, t: 01926815678, e	: mail@cross	field consulti	ng.co.uk	

Control Project: Land of Child(s): Lub, Subtlebury Belet: Club Club Control Res 10.0 Project:	C	ra	sefi		1		Dynamic S	Sample Rec	ord Sheet	Hole Ref.		DS4					
Outcome is a submittant in the intervent of the int					G	Project:	Land off Christy	/'s Lane, Shaftesb	oury	Sheet		1 of 1					
ControlSeptemRegimentProduct Set or USeptem	GEOT	ECHNICA	LENVIR	ONMENT	AL	Date:	04/05/2023			Job No.		CCL03657					
	Contractor		RGI Ltd			Equipment	Premier Compa	act 110		Ground Lev	el.		m OD				
Impart Bind Pice Interview Impart Second Pice Interview I	Method		0.0 m to	2.0 m dy	namic sa	ampling				Co-ordinate	s						
Checked by Casted by <th casted<="" colspan="4" td=""><td>Boring Dia</td><td>meter</td><td>100 mm</td><td></td><td></td><td></td><td></td><td></td><td></td><td>Logged by:</td><td>GK</td><td>Logged on sit drilling opera</td><td>e during</td></th>	<td>Boring Dia</td> <td>meter</td> <td>100 mm</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Logged by:</td> <td>GK</td> <td>Logged on sit drilling opera</td> <td>e during</td>				Boring Dia	meter	100 mm							Logged by:	GK	Logged on sit drilling opera	e during
Sample Lange Lange <thlange< th=""> <th< td=""><td></td><td></td><td><u> </u></td><td></td><td></td><td>.</td><td></td><td></td><td></td><td>Checked by:</td><td></td><td></td><td></td></th<></thlange<>			<u> </u>			.				Checked by:							
Login of ref upper larger value of valu	Sample	Sample	Casing	Water	lest	Description				Depth	Legend	Backfill	Level				
0.00 0.01 0.02 0.02 0.02 0.02 0.00 1 1.01 1.01 1.01 1.01 1.01 0.00 1 1.02 1.01 1.01 1.01 1.01 0.00 1.01 1.01 1.01 1.01 1.01 1.01 0.00 1.01 1.01 1.01 1.01 1.01 1.01 0.00 1.01 1.01 1.01 1.01 1.01 1.01 0.00 1.01 1.01 1.01 1.01 1.01 1.01 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.02 1.01 1.01 1.01 1.01 1.01 1.01 1.02 1.01 1.01 1.01 1.01 <td>Depth</td> <td>or lest</td> <td>Depth</td> <td>Depth</td> <td>value</td> <td>Crovish brown so</td> <td>ndu fina ta caara</td> <td>o sub ongulor gr</td> <td>aval surfacing</td> <td></td> <td>\sim</td> <td>/////</td> <td>0.D.</td>	Depth	or lest	Depth	Depth	value	Crovish brown so	ndu fina ta caara	o sub ongulor gr	aval surfacing		\sim	/////	0.D.				
1001 1						(MADE GROUND)	nuy nne to coars	e sub-aliguiai gi		0.20	\longrightarrow						
3:5 Gy Gy Image: Content on the down register 3:8 J Image: Content on the down register 0.0 3:8 J Image: Content on the down register 0.0 1:8 J Image: Content on the down register 0.0 1:8 J Image: Content on the down register 0.0 1:80 J Image: Content on the down register 0.0 1:80 J Image: Content on the down register 0.0 1:80 J Image: Content on the down register 0.0 1:80 J Image: Content on the down register 0.0 1:80 J Image: Content on the down register 0.0 1:80 J Image: Content on the down register 0.0 1:80 J Image: Content on the down register 0.0 1:80 J Image: Content on the down register 0.0 1:80 Image: Content on the down register Image: Content on the down register 1:80 Image: Content on the down register Image: Content on the down register 1:80 Image: Content on the down register Image: Content on the down re						Firm to stiff consis	stency slightly sa	indy slightly grave	elly silty clay. Gravel is fine to	1	\times						
0.00 1 0.00 <t< td=""><td>0.50</td><td>GgJ</td><td></td><td></td><td></td><td>coarse and sub-ar (MADE GROUND)</td><td>ngular</td><td></td><td></td><td></td><td>\sim</td><td></td><td></td></t<>	0.50	GgJ				coarse and sub-ar (MADE GROUND)	ngular				\sim						
0.00 10 1 1 <						,					\searrow						
0.00 J N. H robbit context.						Loose grevish bro	wn sandy clavey	fine to coarse su	h-angular GRAVEL with medium	0.70							
1.00 1-68 S I	0.90	J				cobble content	in sundy stayey										
1.00 2 1.00 1.00 </td <td>1.00-1.45</td> <td>S</td> <td>-</td> <td>-</td> <td>N=7</td> <td>(BOYNE HOLLOW</td> <td>CHERT MEMBER</td> <td>R)</td> <td></td> <td></td> <td></td> <td></td> <td></td>	1.00-1.45	S	-	-	N=7	(BOYNE HOLLOW	CHERT MEMBER	R)									
1.50 1 1.50 1 1.80 1 1.80 1 1.80 1 2.00-238 5 - 5 - - 2.00-238 5 - 6 - - 2.00-238 5 - 7 - - 2.00-238 5 - 8 - - 1.00 - - 2.00-238 - - 4 - - 2.00-238 - - 5 - - - 2.00-238 - - - 5 - - - - 5 - - - - - 1.00 - - - - - 0.00-100 100% 2.00 - - - - 1.00-2.00 85% - - - - - - - <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.20</td><td></td><td></td><td></td></t<>										1.20							
1.30 1 Image: Special context in the special context						Very dense grey a	nd orangish brow	wn slightly grave	lly very clayey SAND. Gravel is								
1.00 1	1.50	J				fine to coarse and (BOYNE HOLLOW	i sub-angular CHERT MEMBER	R)									
180 1																	
2.00 2.38 S I NSS I NSS End of Hole 2.00 Image: Construction of Hole Image	1.80	J								-	0.0						
2.00 2.38 S I I H SS											्र्े						
End of 10 are End of 10 are Link of 10 are End of 10 are Core Recvery Groundwater Model End of 10 are 1.00 - 2.00 100% 2.00 - Link of 10 are End of 10 are Remarks Notes Further progress precluded by very dense strata 1.41 logging and sampling in accordance with 85 5930-2015-K1-2020 2. The depth to strata change are approximate only 3.5ymbols and abbreviations are explained on the accompanying key 4. All linear dimensions are in metrus unles solutions are in metrus unles solutions are explained on the accompanying key 4. All linear dimensions are in metrus unles solutions are of the accompanying key 4. All linear dimensions are in metrus unles solutions are explained on the accompanying key 4. All linear dimensions are in metrus unles solutions are of the strate shade between stated 5. Undtare deptare stregating the stregating the s	2.00-2.38	S	-	-	<u>N=50</u> 285 mm		En			2.00	<u></u>	/////					
Core Recovery Formodwater Additional Test Depth Recovery Hole Depth Strike Depth Observations Test Popth 0.00-1.00 100% 2.00 - - - Additional Tests Depth Recovery Hole Depth Strike Depth Water Depth Observations Test Popth Test Value 1.00-2.00 55% 2.00 - - - - - - Remarks Notes -					205 1111		EII										
Care Recovery Forumdwater Additional Tests 0.00-1.00 100% 2.00 -																	
Remarks Notes Remarks I. All loging and sampling in accordance with B5 5930:2015+A1:2020 The depths to strate change are approximate only 3. Symbols and abbreviations are explained on the accompanying key 4. All lices are dimensional are in meters unless otherwise stated 3. Undrained these strength text value geympi MV/m ²																	
Core Recovery Groundwater Additional Tests Depth Recovery Hole Depth Strike Depth Observations Test type Test Value 0.00-1.00 100% 2.00 - <																	
Core Recovery Groundwater Additional Tests Depth Recovery Notes 1.00-2.00 100% 2.00 - 1.00-2.00 85% - - Notes 1.14 llogging and sampling in accordance with BS 5930-2015+A1-2020 2.14 llogging and abpreviations are explained on the accompanying key 4.14 llogard abpreviations are in metres unless otherwise stated 3. Symbols and abpreviations are in metres unless otherwise stated Conselfed CONSULTING The Gragener within built conclusion to the test built of the state stated concerting the strate stated concerting the strate stated concerting the strate stated concerting the strate stated constrained on the accompanying key											-						
Core Recovery Groundwater Additional Tests Depth Recovery Hole Depth Strike Depth Observations Test type 0.002.00 100°-2.00 100°-2.00 - - - Observations Test type Remarks Notes - - - - - - - Remarks Notes - <td></td>																	
Core Recovery Groundwater Additional Tests Depth Recovery Hole Depth Strike Depth Observations Test type Test Value 0.00-1.00 100% 2.00 - - Image: Core Recovery Test type Test Value 0.00-1.00 100% 2.00 - - Image: Core Recovery Test Value Test Value 0.00-1.00 100% 2.00 - - Image: Core Recovery Test Value Test Value 1.00-2.00 85% 2.00 - - Image: Core Recovery Test Value Test Value 1.00-2.00 85% 2.00 - - Image: Core Recovery Test Value Test Value 1.00-2.00 85% 2.00 - - Image: Core Recovery Test Value 1.00-2.00 85% 2.00 - - Image: Core Recovery Test Value 2.00 - - - Image: Core Recovery Test Value Test Value 3.00-2.00 Strike Depth - - - Image: Core Recovery Test Val																	
Core Recovery Groundwater Additional Tests Depth Recovery Hole Depth Water Depth Observations Test type 1.00-2.00 85% 2.00 - - - Image: Construction of the second																	
Core Recovery Groundwater Additional Tests Depth Recovery Hole Depth Water Depth Observations Test type Test Value 0.00-1.00 100% 2.00 - - Image: Core Recovery Test type Test Value 0.00-1.00 100% 2.00 - - Image: Core Recovery Test Value 0.00-1.00 100% 2.00 - - Image: Core Recovery Test Value 0.00-1.00 100% 2.00 - - Image: Core Recovery Test Value 0.00-1.00 100% 2.00 - - Image: Core Recovery Test Value 0.00-1.00 100% 2.00 - - Image: Core Recovery Test Value 0.00-1.00 100% 2.00 - - Image: Core Recovery Test Value 0.00-1.00 100% 2.00 - - Image: Core Recovery Test Value 0.00-1.00 100% 2.00 - - - Image: Core Recovery Test Value 0.00-1.00 1.00 2.00<																	
Core Recovery Groundwater Additional Tests Depth Recovery Hole Depth Strike Depth Observations Test type 0.00-1.00 100% 2.00 - - Observations Test type 0.00-1.00 85% 2.00 - - Image: Core Recovery in the type in the																	
Core Recovery Groundwater Additional Tests Depth Recovery Hole Depth Strike Depth Observations Test type 0.00-1.00 100% 2.00 - - Image: Core Recovery Test Depth 0.00-1.00 100% 2.00 - - Image: Core Recovery Test Depth Test Value 0.00-1.00 35% 2.00 - - Image: Core Recovery Test Value 0.00-1.00 100% 2.00 - - Image: Core Recovery Test Value 0.00-1.00 100% 2.00 - - Image: Core Recovery Test Value 0.00-1.00 35% 2.00 - - Image: Core Recovery Test Value 0.00-1.00 35% 2.00 - - Image: Core Recovery Test Value 0.00-1.00 35% 2.00 - - Image: Core Recovery Test Value 0.00-1.00 35% 2.00 - - - Image: Core Recovery Test Value 1.01 Symbols and abberevalue onse on the Recovery <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																	
Core Recovery Groundwater Additional Tests Depth Recovery Hole Depth Strike Depth Observations Test type 0.00-1.00 100% 2.00 - - Observations Test type 0.00-1.00 100% 2.00 - - Image: Construction of the																	
Core Recovery Groundwater Additional Tests Depth Recovery Hole Depth Strike Depth Observations Test type Test Depth 0.00-1.00 100% 2.00 - - Image: Construction of the test of thest of test of																	
Core Recovery Groundwater Additional Tests Depth Recovery Hole Depth Strike Depth Observations Test type Test Depth Test Value 0.00-1.00 100% 2.00 - - - Image: Core Recovery Test Depth Test Value 0.00-1.00 100% 2.00 - - - Image: Core Recovery Test Value 0.00-1.00 100% 2.00 - - - Image: Core Recovery Test Value 0.00-1.00 10% 2.00 - - - Image: Core Recovery Test Value 1.00-2.00 85% Notes - - - - Image: Core Recovery Test Value Remarks . All logging and sampling in accordance with BS 5930:2015+A1:2020 2. The depths to strata change are approximate only Symbols and abbreviations are explained on the accompanying key <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																	
Core Recovery Groundwater Additional Tests Depth Recovery Hole Depth Strike Depth Observations Test type Test Depth Test Value 0.00-1.00 100% 2.00 - - - Image: Core Recovery Test Value 0.00-1.00 100% 2.00 - - - Image: Core Recovery Test Value 0.00-1.00 100% 2.00 - - - - Image: Core Recovery Test Value 0.00-1.00 100% 2.00 - - - - Image: Core Recovery Test Value 1.00-2.00 85% Notes - <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td></td<>											_						
Core Recovery Groundwater Additional Tests Depth Recovery Hole Depth Strike Depth Water Depth Observations Test type Test Depth Test Value 0.00-1.00 100% 2.00 - - - Image: Comparison of the Company with the Depth Test Value 1.00-2.00 85% 2.00 - - - Image: Company with the Depth Test Value Remarks Image: Company with the Depth the De											-						
Core Recovery Groundwater Additional Tests Depth Recovery Hole Depth Strike Depth Observations Test type Test Depth Test Value 0.00-1.00 100% 2.00 - - - Image: Construction of the second of the se																	
Core Recovery Groundwater Additional Tests Depth Recovery Hole Depth Strike Depth Water Depth Observations Test type Test Depth Test Value 0.00-1.00 100% 2.00 -											-						
Core Recovery Groundwater Additional Tests Depth Recovery Hole Depth Strike Depth Water Depth Observations Test type Test Depth Test Value 0.00-1.00 100% 2.00 -											1						
Core Recovery Groundwater Additional Tests Depth Recovery Hole Depth Strike Depth Water Depth Observations Test type Test Depth Test Value 0.00-1.00 100% 2.00 - - - Image: Construction of the construction of										-	-						
Core Recovery Groundwater Additional Tests Depth Recovery Hole Depth Strike Depth Water Depth Observations Test type Test Depth Test Value 0.00-1.00 100% 2.00 -																	
Deputition Recovery Hole Deptition Strike Deptition water Deptition Observations Test type Test Value 0.00-1.00 100% 2.00 -	-	Core Rec	overy			Holo Dooth	Gro Strike De til	oundwater	Observations	Test	Additiona	Tests	alua				
1.00-2.00 85% 1.00-2.00 85% Remarks Notes Further progress precluded by very dense strata 1. All logging and sampling in accordance with BS 5930:2015+A1:2020 2. The depths to strata change are approximate only 3. Symbols and abbreviations are explained on the accompanying key 4. All linear dimensions are in metres unless otherwise stated 5. Undrained shear strength test value given in KN/m ² Crossfield CONSULTING The Gropper, White Hall Farm Long table Sundarise strength test value given in KN/m ²	0.00-1	ui 1.00	кесс 10	overy 0%		2.00	-	- vvater Deptn	Observations	rest type	rest Depth	i est V	aiue				
Remarks Notes Further progress precluded by very dense strata 1. All logging and sampling in accordance with BS 5930:2015+A1:2020 2. The depths to strata change are approximate only 3. Symbols and abbreviations are explained on the accompanying key 4. All linear dimensions are in metres unless otherwise stated 5. Undrained shear strength test value given in kN/m ²	1.00-2	2.00	85	5%													
Remarks Notes Further progress precluded by very dense strata 1. All logging and sampling in accordance with BS 5930:2015+A1:2020 2. The depths to strata change are approximate only 3. Symbols and abbreviations are explained on the accompanying key 4. All linear dimensions are in metres unless otherwise stated 5. Undrained shear strength test value given in kN/m ² 5. Undrained shear strength test value given in kN/m ² 5. Undrained shear strength test value given in kN/m ²											1						
Remarks Notes Further progress precluded by very dense strata 1. All logging and sampling in accordance with BS 5930:2015+A1:2020 2. The depths to strata change are approximate only 3. Symbols and abbreviations are explained on the accompanying key 4. All linear dimensions are in metres unless otherwise stated 5. Undrained shear strength test value given in kN/m ² Crossfield CONSULTING The Grapper White Hall Farm Long technickching Cultivations are in metres unless otherwise stated 5. Undrained shear strength test value given in kN/m ²																	
Remarks Notes Further progress precluded by very dense strata 1. All logging and sampling in accordance with BS 5930:2015+A1:2020 2. The depths to strata change are approximate only 3. Symbols and abbreviations are explained on the accompanying key 4. All linear dimensions are in metres unless otherwise stated 5. Undrained shear strength test value given in kN/m ² Crossfield CONSULTING The Grapper White Hall Farm Long Itchierton Warwickhing CUATOPUL to 11205° 15778 or mail/encreptield consulting on uk																	
Remarks Notes Further progress precluded by very dense strata 1. All logging and sampling in accordance with BS 5930:2015+A1:2020 2. The depths to strata change are approximate only 2. The depths to strata change are approximate only 3. Symbols and abbreviations are explained on the accompanying key 4. All linear dimensions are in metres unless otherwise stated 5. Undrained shear strength test value given in kN/m ² 5. Undrained shear strength test value given in kN/m ²																	
 All logging and sampling in accordance with BS 5930:2015+A1:2020 The depths to strata change are approximate only Symbols and abbreviations are explained on the accompanying key All linear dimensions are in metres unless otherwise stated Undrained shear strength test value given in kN/m² Undrained shear strength test value given in kN/m² 	Remarks							Notes									
2. The deputs to strate change are approximate only 3. Symbols and abbreviations are explained on the accompanying key 4. All linear dimensions are in metres unless otherwise stated 5. Undrained shear strength test value given in kN/m ² 5. Undrained shear strength test value given in kN/m ²	Further pro	ogress pre	ciuaed b	y very de	inse strat	ld		1. All logging an	u sampling in accordance with BS	5930:2015+,	41:2020						
4. All linear dimensions are in metres unless otherwise stated 5. Undrained shear strength test value given in kN/m ² Crossfield CONSULTING The Grappey White Hall Farm Long Itchiet the Warwickching CUATOPUL + 011926/15-78 or mail@crossfield.consulting co.uk								3. Symbols and	abbreviations are explained on th	ie accompan	ying kev						
5. Undrained shear strength test value given in kN/m ² Crossfield CONSULTING The Grappy White Hall Farm Long Itchiatton Warvickshire, CV47004 to 01056915678, as mail@crossfield.consulting.co.uk								4. All linear dim	ensions are in metres unless othe	rwise stated	1						
		Prosefie	d con	SULTING	The Gr	anary. White Hall G	arm. Long Itchin	5. Undrained sh	ear strength test value given in kl	V/m ² : mail@cross	field conculti	ng.co.uk					

\mathbf{C}	roc	eefi		1		Dynamic S	Sample Reco	ord Sheet	Hole Ref.		DS5	
		1100			Project:	Land off Christy	/'s Lane, Shaftesb	ury	Sheet		1 of 1	
GEOT	JIN 3	UL I	onment	AL	Date:	04/05/2023			Job No.		CCL03657	
Contractor		RGI Ltd			Equipment	Premier Compa	act 110		Ground Le	vel.		m OD
Method		0.0 m to	4.0 m dy	namic sa	ampling				Co-ordina	tes		
Boring Dia	meter	100 mm	,		1 0				Logged by	: GK	Logged on sit	e during
									Checked h	v.	drilling opera	itions
Sample	Sample	Casing	Water	Test	Description				Denth	Legend	Backfill	اعروا
Donth	or Tost	Donth	Donth	Value	Description				Deptil	Legend	Duckini	
Deptil	01 1630	Deptil	Deptil	value	Drown condu fino	******		acina	l I	\sim		0.D.
					(MADE GROUND)	to coarse sub-ar	igulai gravei suri	acing	0.20	$-\infty$		
					Stiff consistency k	prown sandy silty	/ clay					
					(MADE GROUND)				-	\rightarrow		
									-	$-\infty$		
										\rightarrow		
1 00-1 45	s	-	-	N=13					1.00	\rightarrow		
1.00 1.45	5			N-15	Medium dense gr	eyish brown slig	htly clayey sandy	fine to coarse sub-angular	1.00			
1.20	J				GRAVEL			-			· ·	
					(BOYNE HOLLOW	CHERT MEMBER	R)		1.40			
1.50	J				Firm to stiff consi	stency brown slip	ghtly sandy slight	lv gravellv CLAY	1.40			
					(BOYNE HOLLOW	CHERT MEMBER	R)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
									-			
2.00-2.45	S	-	-	N=4*								
2 20									-			
2.50	,								-			
									2.80			
					Dense becoming	very dense greyis	sh brown slightly	clayey sandy fine to coarse sub-	2.00	<u></u>		
3.00-3.45	S	-	-	N=30	angular GRAVEL v	vith chert and sa	ndstone fragmen	ts				
					(BOYNE HOLLOW	CHERT MEMBER	R)					
									-			
									-			
3.50	J											
1 00 1 11	c			N 50								
4.00-4.44	5	-	-	290 mm		Fr	nd of Hole		4.00	• — 🗘 •	•••••••	
						-						
									[_		
										-		
										_		
				L								
	Core Rec	overy				Gro	oundwater			Additional	Tests	
Dep	th 1.00	Reco	overy 0%		Hole Depth	Strike Depth	Water Depth	Observations	Test typ	e Test Depth	Test V	alue
1.00-2	2.00	90	0%		4.00							
2.00-3	3.00	60	0%									
3.00-4	4.00	60	0%									
Remarks						I	Notes		1	1		
Further pro	ogress pre	cluded b	y very de	ense strat	ta		1. All logging and	d sampling in accordance with BS	5930:2015	+A1:2020		
* Possible sample disturbance 2. The depths to strata ch						strata change are approximate o	only					
3. 9							3. Symbols and abbreviations are explained on the accompanying key					
							4. All linear dime	ensions are in metres unless othe	erwise state	d		
L(Crossfie	ld CON	SULTING	Fine Gra	anary, White Hall F	arm, Long Itchin	5. Undrained sh gton, Warwicksh	ear strength test value given in k ire, CV47 9PU, t: 01926815678, e	w/m : mail@cro:	sfield consulti	ng.co.uk	

© Copyright 2022 **Equipe Group**, The Paddocks, Home Farm Offices, The Upton Estate, Banbury, Oxfordshire, OX15 6HU Tel: +44 (0)1295 670990 Fax: +44 (0)1295 678232 Email: info@equipegroup.com

Appendix D CCTV drainage survey report

CCTV SURVEYS

HIGH PRESSURE JETTING

MAN ENTRY SURVEYS

RELINING & REPAIRS

PILING SURVEYS

UTILITYSURVEYSLTD.

5 SUFFOLK ROAD MALDON ESSEX CM9 6AX Telephone: 07971 910370

CCTV REPORT

CLIENT	CHURCHILL RETIREMENT LIVING
LOCATION	LIDL SITE CHRISTYS LANE SHAFTESBURY DORSET SP7 8TL
DATE	28/04/2023 & 15/05/2023
REF	071510

CONTENTS

1.	GENERAL INFORMATION	3
2.	CONTACT INFORMATION	3
3.	UTILITY SURVEYS LTD CONTACT DETAILS	3
4.	SITE DESCRIPTION	.4
5.	SURVEY BRIEF	.5
6.	SURVEY TECHNIQUES	.7
7.	INDIVIDUAL INSPECTION REPORT	.8

REGISTER OF APPENDICES

- A. MANHOLE INSPECTION REPORT
- B. COPIES OF SITE HAND WRITTEN DAILY RECORD SHEETS
- C. ANNOTATED SITE DRAWINGS

GENERAL INFORMATION

Utility Surveys Ltd have been appointed by Churchill Retirement Living to undertake a Sewer Condition Survey at the location identified. This survey commenced on 28/04/2023.

CONTACT INFORMATION

SITE ADDRESS:	SITE CONTACT: N/A
LIDL SITE	
CHRISTYS LANE	CONTACT NO:
SHAFTESBURY	
DORSET	EMAIL:
SP7 8TL	
CLIENT DETAILS:	CONTACT: WES SANDERSON
CHURCHILL RETIREMENT LIVING	
CHURCHILL HOUSE	CONTACT NO:
PARKSIDE	
RINGWOOD	EMAIL:
BH24 3SG	

UTILITY SURVEYS LTD CONTACT DETAILS

OFFICE	SIMON GARDINER
RIG MANAGER	SIMON GARDINER

SITE DESCRIPTION

Site Description

DEVELOPMENT SITE

Site Boundaries

CLEARLY DEFINED ON SUPPLIED DRAWINGS

SURVEY BRIEF

Sewer Condition Inspection Survey

The Purpose of the Sewer Condition Inspection Survey was to establish the location and extent of foul and/ or surface water drainage systems and to document their condition prior to any further works.

- A full condition survey can only be produced if precleansing / jetting is carried out in conjunction with the CCTV survey.
- If precleansing is not carried out at the time of the survey further faults and conditional defects may be present but not recorded in this report.

In addition Utility Surveys Ltd have;

- Attempted to investigate all agreed areas, although if not all could be fully accessed (see Daily Record Sheet).
- Produced a report to establish the location and extent of foul and surface water drainage systems and to document their condition prior to any further works.
- Provided the basic information from which a remediation or management plan can be instigated.
- Highlighted the requirement for urgent action to repair or remediation works to the surveyed drainage system.
- Incorporated in the results any additional manholes/ drainage found, which may have been buried, obscured or not identified in the original scope of works.

Agreed Restrictions and Exclusions

This report is based upon a Sewer Condition Inspection Survey of an unfamiliar site.

During the course of the survey all reasonable efforts were made to identify and access all Manholes and foul/ surface drainage/ outfall, throughout the site.

Some installations/ areas may not have been inspected due to access and or safety reasons (e.g. Wet Wells, Large Unventilated Tanks, Traffic Management Situations). Unless an accepted safe system of work has been devised.

Access may not have been gained to several areas of the site due to conditions outside the control of the client or contractor, any such areas have been documented within this report (see Daily Record Sheet).

Any diagrams/ CAD drawings in the report are not to be scaled and are illustrative only to indicate approximate locations.

Manhole covers will not be lifted if:

- a) There is a danger of damaging surrounding flooring or finishes.
- b) They are covered, i.e. under fitted carpets, flooring, tiling or paving etc.
- c) Under fittings, fixtures, fencing, equipment etc.

Buried manholes will be located, if possible, position marked. If instructed, excavated in soft ground only up to a depth of 350mm with temporary reinstatement.

No allowance has been made for any precleansing unless stated in the quotation.

Full and free access to all areas affected is to be arranged by the instructing party.

SURVEY TECHNIQUES

The areas set out within the survey brief underwent inspection for a Sewer Condition Inspection Survey each area within the agreed scope of works was surveyed for location extent and condition of foul and/ or surface water drainage systems and CCTV footage gathered for confirmation. Every reasonable effort was made to investigate all aspects of the drainage system. Additional photographs were taken where relevant to the inspection.

There were no deviations from the agreed scope of works.

This Sewer Condition Inspection Survey was carried out in accordance with the Utility Surveys Ltd documented 'in-house' procedure 820 'Code of Working Practice' based on National Sewerage Association guidance. The Sewer Condition Inspection Survey Report states information recorded at the time of survey only, based on visual and CCTV assessment in accordance with sewer classification codings issued by WRC, incorporating the following inspection criteria:

CONDITION of pipe work LOCATION of pipe work EXTENT of the pipe work

A defect grade description has been provided for the identification of defective pipe work.

Changes to any of the above criteria shall necessitate the need for reassessment

These gradings and the reports can be used to form the basis of a planned preventative maintenance programme. This can be the subject of further discussions with our technical support team.

Drainage Report

Prepared For

CHURCHILL RETIREMENT LIVING PARKSIDE RINGWOOD HAMPSHIRE BH24 3SG Site LIDL SITE CHRISTYS LANE SHAFTSBURY DORSET SP7 8TL

UTILITY SURVEYS LIMITED Surveyor: Simon Gardiner simon@utilitysurveysltd.co.uk

Total DRB Grades for Project

071510 CHRISTYS LANE SHAFTSBURY - CCTV Survey Report : 28/04/23

Name :	UTILITY SURVEYS LIMITED
Contact :	SIMON GARDINER
Location :	5 SUFFOLK ROAD
Town :	MALDON
Region :	ESSEX
Postcode :	CM9 6AX
Email :	simon@utilitysurveysltd.co.uk
Contact Number :	
Surveyor :	Simon Gardiner
Valid Certification No :	L1103

Client Information

Name :	CHURCHILL RETIREMENT LIVING
Contact :	WES SANDERSON
Location :	PARKSIDE
Town :	RINGWOOD
Region :	HAMPSHIRE
Postcode :	BH24 3SG
Tel :	
Mobile :	
Email :	
Fax :	

Site Information

Name :	LIDL SITE
Contact :	
Location :	CHRISTYS LANE
Town :	SHAFTSBURY
Region :	DORSET
Postcode :	SP7 8TL
Tel :	
Mobile :	
Email :	
Fax :	

0

Total Defects for Project

14

Total DRB Grades for Project

Report interpretation.

Overview:

Each section of the drainage system is allocated a score indicating areas that require attention. These areas are detailed in the Overview section on the following page and also at the bottom right of the first few pages. We use colour coding as an indicator of severity. Additional information concerning rehabilitation options/recomendations is included in the Overview page, which can also be used as an, "at a glance" indication of system condition. More in depth information for each section, Including images can be found later in the report. Grade indicators are as follows:

Grade A: Drain is serviceable no recommendations required

Grade B: There is an issue that might require remedial works

Grade C: There is a defect that requires remedial works, the drain is not serviceable.

Observations:

Each section of drainage reported on (manhole to manhole for example), contains detailed information about that drain and any observations made concerning condition are detailed below the header section. The observations are colour coded and given a severity score, with more significant defects being given a higher score, using a scale from 1 to 5 as detailed below:

Severity 1 to 2: These defects may require remedial monitoring

33

Severity 3: These defects probably require some form of remedial works

Severity 4 to 5: Defects that will require remedial repair or replacement

General:

The information provided is relevant at the time of survey. The coding system in this report is based on the Manual of Sewer Condition Classification, 5th edition (MSCC5) domestic codes (BS EN 13508-1:2003). This is the official standard for the water industry.

The severity system is based on significant experience in general practice and the 1-5 grades represent the severity of individual defects: 5 representing a more serious defect.

Please feel free to contact us for further explanation or pricing for remedial works required.

Total Defects for Project

14

6

Total DRB Grades for Project

Overview

Section: 1 From: F2 To: F1	Grade A	DRB Grade: A Pipe Size: 225 Material: Polyvinyl Chloride Use: Foul
Section: 2 From: F2 To: F3	Grade C	DRB Grade: C Pipe Size: 150 Material: Vitrified Clay (i.e. all clayware) Use: Foul
Section: 3 From: S6 To: MAIN	Grade B	DRB Grade: B Pipe Size: 100 Material: Vitrified Clay (i.e. all clayware) Use: Surface Water
Section: 4 From: F3 To: F5	Grade B	DRB Grade: B Pipe Size: 150 Material: Vitrified Clay (i.e. all clayware) Use: Foul
Section: 5		
From: F5 To: F6	Grade B	DRB Grade: B Pipe Size: 150 Material: Polyethylene Use: Foul
Section: 6 From: F3 To: SPUR A	Grade B	DRB Grade: <mark>B</mark> Pipe Size: 150 Material: Polyvinyl Chloride Use: Foul
Section: 7 From: 8103 To: 8001	Grade B	DRB Grade: B Pipe Size: 225 Material: Vitrified Clay (i.e. all clayware) Use: Surface Water
Section: 8 From: F4 To: 8102	Grade B	DRB Grade: <mark>B</mark> Pipe Size: 150 Material: Unidentified material Use: Foul

0

Total Defects for Project

14

1

Total DRB Grades for Project

0

0

0

0

0

Section 1

Page 5

Site: CHRISTYS LANE, SHAFTSBURY

C	lient:		Location (Street Name):		City/Town/Village Cu		Cus	st Job Ref.	. Surveyors Name:		Date:
CHU RETIREM	RCHI IENT	LL LIVING	CHRIS	STYS LANE	SHA	FTSBURY			Simon	Gardiner	28/04/2023
Start Node Start Node	Ref: Dept	h: dinate:		F2 Finish N 0.00 Finish N Finish N	ode Ref: ode Depth	: inate:		F 0.0	1 Direction: 0 Use: Material:	U He F Sh	eight/Dia: 225 hape: C
Node Type	e C	over Cond	ition	Benching Condit	ion	1/2 Channel Condition				e Condition R	emarks
MH				0							
Drain Type	Lin	ing Type	Lining Mat	Year Const.	Weather	Flow Cont.	Length		Gene	ral Remarks	
A					D	N	61.8				
Position	Cod	le Desci	ription				CE) Pic	Video Ref	1	0m
00.00m	MH	Start	node type	e, manhole						-/	
00.00m	WL	Wate	r level 5	%					0:00:00	_	
18.00m	WL	Wate	r level 1	0%					0:02:35		
23.00m	WL	Wate	r level 5	%					0:03:19	\square	
61.50m	REI	M Gene	eral remar	k				0_4	0:08:17	\neg	
61.80m	ΜН	F Finisł	n node typ	be, manhole						-//	
										//	-
											61.8m
Total De	efect	s for sec	tion							DRB Gr	ade for Sectior

Descri	ptive Repo	ort with R	emarks and Observation	Images Section 1
Pos	Video Ref	Code	Description	Image
00.00m		MH	Start node type, manhole F2	
00.00m	0:00:00	WL	Water level: 5% Height/Diameter	
18.00m	0:02:35	WL	Water level: 10% Height/Diameter	
23.00m	0:03:19	WL	Water level: 5% Height/Diameter	
61.50m	0:08:17	REM	General remark ENTERS MANHOLE	Image Provided - Ref: 0_4
61.80m		MHF	Finish node type, manhole F1	

Descriptive Report with Remarks and Observation Images

DRB Grade for Section

Total Defects for section

Section 2

Page 7

Site: CHRISTYS LANE, SHAFTSBURY

С	lient:	ent: Location (Street Name): City/Town			own/Village	Cust	Job Ref.	Survey	ors Name:		Da	ate:		
CHUI RETIREM	RCHILL 1ENT LI	VING	CHRI	STYS	LANE	SHA	FTSBURY			Simon	Gardiner		28/04	/2023
Start Node Start Node Start Node	Ref: Depth: Coordi	nate:		F 0.0	F2 Finish No D0 Finish No Finish No	ode Ref: ode Depth ode Coord	: inate:	L	0.	F3 Direction: 00 Use: Material:	D F VC	Heig Shap Clea	ht/Dia: be: ned	150 C N
Node Type	e Cov	ver Cond	lition	Benc	ching Conditi	1/2 Channe	l Conditic	on	Nod	e Conditior	n Ren	narks		
MH			1					1]
Drain Type	Linin	д Туре	Lining Ma	t. Y	'ear Const.	Weather	Flow Cont.	Length		Gene	eral Remar	ks		
A						D	N	73.08				~		
Position	Code	Desc	ription					CD	Pic	Video Ref	/	1	Um	
00.00m	MH	Start	node typ	e, ma	anhole						-/			
00.00m	WL	Wate	er level 5	%						0:00:00				
02.20m	CC	Crac	k, circumf	eren	ntial 07-05					0:00:18				
05.88m	CCJ	Crac	k, circumf	eren	ntial 11-03	at joint				0:00:43	_			
08.36m	CL	Crac	k, longitud	dinal	03				1_4	0:01:02	$\overline{}$			
08.36m	CCJ	Crac	k, circumf	eren	ntial 09-03	at joint				0:01:02		\rightarrow		
10.16m	CLJ	Crac	k, longitud	dinal	12 at joir	nt				0:01:19				
11.32m	CMJ	Crac	ks, multip	le 0	7-05 at joi	nt			1_7	0:01:28				
13.40m	FL	Fract	ture longit	udina	al 11					0:01:55	$\overline{}$			
13.80m	Н	Hole	in drain/s	ewei	r 10-02				1_9	0:02:01		\geq		
15.90m	RJ	Root	s at joint						1_10	0:02:24	$\overline{}$		Ι.	
19.59m	RJ	Root	s at joint							0:02:57	\neg	\geq		
21.54m	CCJ	Crac	k, circumf	eren	ntial 02-05	at joint			1_12	0:03:17	$\neg $			1.2.
21.70m	CN	Conr	nection ot	ner th	han junctio	on 02:	100mm		1_13	0:03:18	-//	\sum		8
22.00m	DES	Settle	ed deposi	ts fin	ne 10%					0:03:23	-/	//	12	
22.20m	WL	Wate	er level 1	0%						0:03:32	-	1		
22.50m	WL	Wate	er level 2	0%						0:03:32	\sim	1	1	
23.14m	RJ	Root	s at joint							0:03:36		1		
23.60m	FL	Fract	ture longit	udina	al 03				1_18	0:03:46	-	11		
23.60m	MC	Mate	rial of dra	in/se	ewer chan	ges				0:03:48	-1	///		
23.60m	REM	Gene	eral remai	ĸ						0:03:48	-//	/		
23.60m	WL	Wate	er level 5	%						0:04:16	_/	/		
24.50m	MC	Mate	rial of dra	in/se	ewer chang	ges				0:04:23		/		
28.00m	RJ	Root	s at joint						1_22	0:04:50				
33.22m	CLJ	Crac	k, longitud	dinal	02 at joir	nt				0:05:42			33.	22m

0

Total Defects for section

11

9

C

Position	Code	Description	CD	Pic	Video Ref		33.22m
33.22m	CCJ	Crack, circumferential 07-05 at joint			0:05:42		
39.83m	JDL	Joint displaced large		1_26	0:06:46		
41.86m	JDL	Joint displaced large		1_27	0:07:05	\sim	
48.39m	CCJ	Crack, circumferential 03-09 at joint			0:08:19		
52.57m	RJ	Roots at joint		1_29	0:09:01	_	-
56.75m	RJ	Roots at joint			0:09:41	\sim	
68.20m	FL	Fracture longitudinal 03		1_31	0:11:35	\neg	107
68.60m	FM	Fracture multiple 07-05		1_32	0:11:40		
68.80m	RJ	Roots at joint		1_33	0:11:42	_//	20
72.79m	JN	Junction 09 : 100mm Diameter		1_34	0:12:40	$\neg \mathcal{N}$	
73.08m	SA	Survey abandoned				-/	.73.08m

Total Defects for section

DRB Grade for Section

11

Descrip	otive Repo	ort with R	emarks and Observation I	mages Section 2
Pos	Video Ref	Code	Description	Image
00.00m		MH	Start node type, manhole F2	
00.00m	0:00:00	WL	Water level: 5% Height/Diameter	
02.20m	0:00:18	СС	Crack, circumferential from 07 o'clock to 05 o'clock - Severity 1	
05.88m	0:00:43	CCJ	Crack, circumferential from 11 o'clock to 03 o'clock at joint - Severity 1	
08.36m	0:01:02	CL	Crack, longitudinal at 03 o'clock - Severity 1	Image Provided - Ref: 1_4
08.36m	0:01:02	CCJ	Crack, circumferential from 09 o'clock to 03 o'clock at joint - Severity 1	
10.16m	0:01:19	CLJ	Crack, longitudinal at 12 o'clock at joint - Severity 1	
11.32m	0:01:28	CMJ	Cracks, multiple from 07 o'clock to 05 o'clock at joint - Severity 2	Image Provided - Ref: 1_7
13.40m	0:01:55	FL	Fracture longitudinal at 11 o'clock - Severity 3	

Descriptive Report with Remarks and Observation Images

DRB Grade for Section

Pos	Video Ref	Code	Description	Image				
13.80m	0:02:01	Η	Hole in drain/sewer from 10 o'clock to 02 o'clock - Severity 4	Image Provided - Ref: 1_9				
15.90m	0:02:24	RJ	Roots at joint - Severity 3 FINE ROOTS AT JOINT	Image Provided - Ref: 1_10				
19.59m	0:02:57	RJ	Roots at joint - Severity 3 FINE ROOTS AT JOINT					
21.54m	0:03:17	CCJ	Crack, circumferential from 02 o'clock to 05 o'clock at joint - Severity 1	Image Provided - Ref: 1_12				

Pos	Video Ref	Code	Description	Image				
21.70m	0:03:18	CN	Connection other than junction at 02 o'clock: 100mm Diameter	Image Provided - Ref: 1_13				
22.00m	0:03:23	DES	Settled deposits fine: 10% Cross sectional area loss - Severity 3					
22.20m	0:03:32	WL	Water level: 10% Height/Diameter					
22.50m	0:03:32	WL	Water level: 20% Height/Diameter					
23.14m	0:03:36	RJ	Roots at joint - Severity 3 FINE ROOTS AT JOINT					
23.60m	0:03:46	FL	Fracture longitudinal at 03 o'clock - Severity 3	Image Provided - Ref: 1_18				
23.60m	0:03:48	MCPVC	Material of pipe changes to Polyvinyl Chloride					
23.60m	0:03:48	REM	General remark POSSIBLE PVC SLEEVE REPAIR					
23.60m	0:04:16	WL	Water level: 5% Height/Diameter					
24.50m	0:04:23	MCVC	Material of pipe changes to Vitrified Clay (i.e. all clayware)					

0

Total Defects for section

11

DRB Grade for Section

Pos	Video Ref	Code	Description	Image				
28.00m	0:04:50	RJ	Roots at joint - Severity 3 FINE ROOTS AT JOINT	Image Provided - Ref: 1_22				
33.22m	0:05:42	CLJ	Crack, longitudinal at 02 o'clock at joint - Severity 1					
33.22m	0:05:42	CCJ	Crack, circumferential from 07 o'clock to 05 o'clock at joint - Severity 1					
39.83m	0:06:46	JDL	Joint displaced large - Severity 4	Image Provided - Ref: 1_26				
41.86m	0:07:05	JDL	Joint displaced large - Severity 4	Image Provided - Ref: 1_27				
48.39m	0:08:19	CCJ	Crack, circumferential from 03 o'clock to 09 o'clock at joint - Severity 1					

Total Defects for section

9

DRB Grade for Section

0

_

Pos	Video Ref	Code	Description	Image			
52.57m	0:09:01	RJ	Roots at joint - Severity 3 ROOTS AT JOINT	Image Provided - Ref: 1_29			
56.75m	0:09:41	RJ	Roots at joint - Severity 3 ROOTS AT JOINT				
68.20m	0:11:35	FL	Fracture longitudinal at 03 o'clock - Severity 3	Image Provided - Ref: 1_31			
68.60m	0:11:40	FM	Fracture multiple from 07 o'clock to 05 o'clock - Severity 4	Image Provided - Ref: 1_32			

Total Defects for section DRB Grade for Section

Pos	Video Ref	Code	Description	Image
68.80m	0:11:42	RJ	Roots at joint - Severity 3 MASS ROOTS AT JOINT	Image Provided - Ref: 1_33
72.79m	0:12:40	JN	Junction at 09 o'clock: 100mm Diameter	Image Provided - Ref: 1_34
73.08m		SA	Survey abandoned UNABLE TO PUSH ROD FURTHER	

Total Defects for section

9

ŝ

11

0

4

DRB Grade for Section

- C

Site: CHRISTYS LANE, SHAFTSBURY

TYS L	ANE, S	HAF	TSBU	۲Y						S	ectio	n 3
	Location	(Street	Name):	City/T	own/Village	Cust	Job Ref.	Survey	ors Name	:	Date	e:
L IVING	CHRIS	STYS L	ANE	SHAFTSBURY			Simon	Simon Gardiner		15/05/2	2023	
		S6	Finish No	ode Ref:			MA	N Direction:	D	Heigh	t/Dia:	100
		0.00	Finish No	ode Depth			0.0	00 Use:	S	Shape	e:	С
nate:			Finish No	ode Coord	inate:			Material:	VC	Clean	ed	Y
ver Cond	lition	Bench	ing Condit	ion	1/2 Channe	l Conditio	n	Nod	e Conditio	n Rema	arks	
					1							
пд Туре	Lining Mat	t. Yea	ar Const.	Weather	Flow Cont.	Length		Gene	eral Rema	rks		
				D	N	6.78						
e Descr Start Wate Wate Wate Settle Settle Surve	ription node type r level 5 r level 1 r level 2 ed deposit ure circur ed deposit eral remar ey abando	e, mar % 0% 0% ts coa hferer ts coa k bned	nhole rse 209 ntial 08-1 rse 100	% 04)%		CD	Pic 2_7	Video Ref 0:00:00 0:00:16 0:00:26 0:00:00 0:01:13 0:01:13			0m	
	TYS I	TYS LANE, S Location IVING IVING INING INING<	TYS LANE, SHAF Location (Street CHRISTYS L S6 0.00 nate: ver Condition Bench g Type Lining Mat. Yea Poscription Start node type, mar Water level 5% Water level 5% Water level 20% Settled deposits coa Fracture circumferer Settled deposits coa General remark Survey abandoned	TYS LANE, SHAFTSBUI Location (Street Name): CHRISTYS LANE S6 Finish No 0.00 Finish No nate: S6 Finish No g Type Lining Mat. Year Const. g Type Start node type, manhole Water level 5% Water level 20% Settled deposits coarse 100 <t< td=""><td>Location (Street Name): City/T MING CHRISTYS LANE SHA 0.00 Finish Node Ref: Finish Node Coord nate: 0.00 Finish Node Coord ver Condition Benching Condition Image: ig Type Lining Mat. Year Const. Weather Water level 5% Year Coarse 20% Settled deposits coarse 100% Year Year General re</td><td>Itys LANE, SHAFTSBURY Location (Street Name): City/Town/Village S6 Finish Node Ref: 0.00 Finish Node Coordinate: Finish Node Coordinate: ver Condition 1/2 Channe g Type Lining Mat. Year Const. Weather Flow Cont. g Type Lining Mat. Year Const. Weather Flow Cont. g Type Lining Mat. Year Const. Weather Flow Cont. g Type Lining Mat. Year Const. Weather Flow Cont. g Type Lining Mat. Year Const. Weather Flow Cont. g Type Lining Mat. Year Const. Weather Flow Cont. g Type Lining Mat. Year Const. Weather Flow Cont. g Type Lining Mat. Year Const. Weather Flow Cont. Mater level 5% Water level 20% Settled deposits coarse 20% Fracture circumferential 08-04 Settled deposits coarse 100% Settled deposits coarse 10% G General remark Survey aban</td><td>TYS LANE, SHAFTSBURY Location (Street Name): City/Town/Village Cust VING CHRISTYS LANE SHAFTSBURY Cust Image: CHRISTYS LANE SHAFTSBURY SHAFTSBURY Image: 0.00 Finish Node Ref: Finish Node Coordinate: Start Inde Condition 1/2 Channel Condition Image: Image: Image: Image: Node Coordinate: Start Inde Condition 1/2 Channel Condition Image: Image:</td><td>TYS LANE City/Town/Village Cust Job Ref. MING CHRISTYS LANE SHAFTSBURY MAI S6 Finish Node Ref: MAI 0.00 Finish Node Depth: 0.00 Finish Node Coordinate: 0.00 rate: enching Condition 1/2 Channel Condition 0.00 g Type Lining Mat. Year Const. Weather Flow Cont. Length g Type Lining Mat. Year Const. Weather Flow Cont. Length g Type Lining Mat. Year Const. Weather Flow Cont. Length g Type Lining Mat. Year Const. Weather Flow Cont. Length g Type Lining Mat. Year Const. Weather Flow Cont. Length g Type Lining Mat. Year Const. Weather Flow Cont. Length g Type Lining Mat. Year Const. Weather Flow Cont. Length g Type Start node type, manhole Water level 20% Settled deposits coarse 20% Settled deposits coarse 100% <</td><td>TYS LANE, SHAFTSBURY Location (Street Name): City/Town/Village Cust Job Ref. Survey MING CHRISTYS LANE SHAFTSBURY MAIN Direction: nate: S6 Finish Node Ref: MAIN Direction: Use: nate: Finish Node Coordinate: MAIN Direction: Material: ver Condition Benching Condition 1/2 Channel Condition Node g Type Lining Mat. Year Const. Weather Flow Cont. Length Gene g Type Lining Mat. Year Const. Weather Flow Cont. Length Gene o Description CD Pic Video Ref Start node type, manhole Water level 5% 0:00:00 Water level 10% 0:00:16 Settled deposits coarse 20% 0:00:26 Fracture circumferential 08-04 0:00:00 Settled deposits coarse 10% 0:01:13 General remark 2_7 0:01:13 Survey abandoned</td><td>TYS LANE, SHAFTSBURY Location (Street Name): City/Town/Village Cust Job Ref. Surveyors Name VING CHRISTYS LANE SHAFTSBURY Cust Job Ref. Simon Gardiner 0.00 Finish Node Depth: 0.00 Finish Node Coordinate: 0.00 Benching Condition 1/2 Channel Condition Node Coordinate: Material: VC ver Condition Benching Condition 1/2 Channel Condition Node Coordinate: Material: VC g Type Lining Mat. Year Const. Weather Flow Cont. Length General Rema p Description CD Pic Video Ref Start node type, manhole Water level 5% 0:00:00 0:00:16 Pic Video Ref Start node type, manhole 0:00:00 0:00:16 Pic Pic</td><td>TYS LANE, SHAFTSBURY Surveyors Name: Location (Street Name): City/Town/Village Cust Job Ref. Surveyors Name: WING CHRISTY'S LANE SHAFTSBURY Cust Job Ref. Simon Gardiner 0.00 Finish Node Ref: MAIN Direction: D Heigh nate: 0.00 Finish Node Ref: MAIN Outection: D Heigh user Condition Benching Condition 1/2 Channel Condition Node Condition Remains Node Condition Remains ig Type Lining Mat. Year Const. Weather Flow Cont Length General Remarks a D N 6.78 0:00:00 Water level 10% 0:00:16 Vater level 10% 0:00:16 0:00:00 0:00:26 Fracture circumferential 08-04 0:00:00 Settled deposits coarse 10% 0:01:13 0:01:13 0:01:13 General remark 2_7 0:01:13 0:01:13 0:01:13 Survey abandoned Survey abandoned Survey abandoned Survey abandoned</td><td>TYS LANE, SHAFTSBURY Section Location (Street Name): City/Town/Village Cust Job Ref. Surveyors Name: Date VING CHRISTY'S LANE SHAFTSBURY Cust Job Ref. Simon Gardiner 15/05/2 nate: 0.00 Finish Node Ref: MAIN Direction: D Height/Dia: use: S Finish Node Coordinate: 0.00 Material: VC Cleaned ver Condition Benching Condition 1/2 Channel Condition Node Condition Remarks Shape: g Type Lining Mat. Year Const. Weather Flow Cont. Length General Remarks a Description CD Pic Video Ref Start node type, manhole Water level 5% 0:00:00 Water level 10% 0:00:16 0:00:16 0:00:16 0:00:113 0:00:113 0:00:113 Settled deposits coarse 10% 0:01:13 2_7 0:01:13 0:07:13 0:07:13 General remark 2_7 0:01:13 0:07:13 0:07:13 0:07:13 0:07:13 0:07:13 0:07:13 0:07:13</td></t<>	Location (Street Name): City/T MING CHRISTYS LANE SHA 0.00 Finish Node Ref: Finish Node Coord nate: 0.00 Finish Node Coord ver Condition Benching Condition Image: ig Type Lining Mat. Year Const. Weather Water level 5% Year Coarse 20% Settled deposits coarse 100% Year Year General re	Itys LANE, SHAFTSBURY Location (Street Name): City/Town/Village S6 Finish Node Ref: 0.00 Finish Node Coordinate: Finish Node Coordinate: ver Condition 1/2 Channe g Type Lining Mat. Year Const. Weather Flow Cont. g Type Lining Mat. Year Const. Weather Flow Cont. g Type Lining Mat. Year Const. Weather Flow Cont. g Type Lining Mat. Year Const. Weather Flow Cont. g Type Lining Mat. Year Const. Weather Flow Cont. g Type Lining Mat. Year Const. Weather Flow Cont. g Type Lining Mat. Year Const. Weather Flow Cont. g Type Lining Mat. Year Const. Weather Flow Cont. Mater level 5% Water level 20% Settled deposits coarse 20% Fracture circumferential 08-04 Settled deposits coarse 100% Settled deposits coarse 10% G General remark Survey aban	TYS LANE, SHAFTSBURY Location (Street Name): City/Town/Village Cust VING CHRISTYS LANE SHAFTSBURY Cust Image: CHRISTYS LANE SHAFTSBURY SHAFTSBURY Image: 0.00 Finish Node Ref: Finish Node Coordinate: Start Inde Condition 1/2 Channel Condition Image: Image: Image: Image: Node Coordinate: Start Inde Condition 1/2 Channel Condition Image: Image:	TYS LANE City/Town/Village Cust Job Ref. MING CHRISTYS LANE SHAFTSBURY MAI S6 Finish Node Ref: MAI 0.00 Finish Node Depth: 0.00 Finish Node Coordinate: 0.00 rate: enching Condition 1/2 Channel Condition 0.00 g Type Lining Mat. Year Const. Weather Flow Cont. Length g Type Lining Mat. Year Const. Weather Flow Cont. Length g Type Lining Mat. Year Const. Weather Flow Cont. Length g Type Lining Mat. Year Const. Weather Flow Cont. Length g Type Lining Mat. Year Const. Weather Flow Cont. Length g Type Lining Mat. Year Const. Weather Flow Cont. Length g Type Lining Mat. Year Const. Weather Flow Cont. Length g Type Start node type, manhole Water level 20% Settled deposits coarse 20% Settled deposits coarse 100% <	TYS LANE, SHAFTSBURY Location (Street Name): City/Town/Village Cust Job Ref. Survey MING CHRISTYS LANE SHAFTSBURY MAIN Direction: nate: S6 Finish Node Ref: MAIN Direction: Use: nate: Finish Node Coordinate: MAIN Direction: Material: ver Condition Benching Condition 1/2 Channel Condition Node g Type Lining Mat. Year Const. Weather Flow Cont. Length Gene g Type Lining Mat. Year Const. Weather Flow Cont. Length Gene o Description CD Pic Video Ref Start node type, manhole Water level 5% 0:00:00 Water level 10% 0:00:16 Settled deposits coarse 20% 0:00:26 Fracture circumferential 08-04 0:00:00 Settled deposits coarse 10% 0:01:13 General remark 2_7 0:01:13 Survey abandoned	TYS LANE, SHAFTSBURY Location (Street Name): City/Town/Village Cust Job Ref. Surveyors Name VING CHRISTYS LANE SHAFTSBURY Cust Job Ref. Simon Gardiner 0.00 Finish Node Depth: 0.00 Finish Node Coordinate: 0.00 Benching Condition 1/2 Channel Condition Node Coordinate: Material: VC ver Condition Benching Condition 1/2 Channel Condition Node Coordinate: Material: VC g Type Lining Mat. Year Const. Weather Flow Cont. Length General Rema p Description CD Pic Video Ref Start node type, manhole Water level 5% 0:00:00 0:00:16 Pic Video Ref Start node type, manhole 0:00:00 0:00:16 Pic Pic	TYS LANE, SHAFTSBURY Surveyors Name: Location (Street Name): City/Town/Village Cust Job Ref. Surveyors Name: WING CHRISTY'S LANE SHAFTSBURY Cust Job Ref. Simon Gardiner 0.00 Finish Node Ref: MAIN Direction: D Heigh nate: 0.00 Finish Node Ref: MAIN Outection: D Heigh user Condition Benching Condition 1/2 Channel Condition Node Condition Remains Node Condition Remains ig Type Lining Mat. Year Const. Weather Flow Cont Length General Remarks a D N 6.78 0:00:00 Water level 10% 0:00:16 Vater level 10% 0:00:16 0:00:00 0:00:26 Fracture circumferential 08-04 0:00:00 Settled deposits coarse 10% 0:01:13 0:01:13 0:01:13 General remark 2_7 0:01:13 0:01:13 0:01:13 Survey abandoned Survey abandoned Survey abandoned Survey abandoned	TYS LANE, SHAFTSBURY Section Location (Street Name): City/Town/Village Cust Job Ref. Surveyors Name: Date VING CHRISTY'S LANE SHAFTSBURY Cust Job Ref. Simon Gardiner 15/05/2 nate: 0.00 Finish Node Ref: MAIN Direction: D Height/Dia: use: S Finish Node Coordinate: 0.00 Material: VC Cleaned ver Condition Benching Condition 1/2 Channel Condition Node Condition Remarks Shape: g Type Lining Mat. Year Const. Weather Flow Cont. Length General Remarks a Description CD Pic Video Ref Start node type, manhole Water level 5% 0:00:00 Water level 10% 0:00:16 0:00:16 0:00:16 0:00:113 0:00:113 0:00:113 Settled deposits coarse 10% 0:01:13 2_7 0:01:13 0:07:13 0:07:13 General remark 2_7 0:01:13 0:07:13 0:07:13 0:07:13 0:07:13 0:07:13 0:07:13 0:07:13

Total Defects for section

0

3

0

0

0

Descriptive Report with Remarks and Observation Images

Section 3

Pos	Video Ref	Code	Description Image		
00.00m		MH	Start node type, manhole S6		
00.00m	0:00:00	WL	Water level: 5% Height/Diameter		
01.00m	0:00:16	WL	Water level: 10% Height/Diameter		
01.50m	0:00:16	WL	Water level: 20% Height/Diameter		
01.50m	0:00:26	DER	Settled deposits coarse: 20% Cross sectional area loss - Severity 3		
06.58m	0:00:00	FC	Fracture circumferential from 08 o'clock to 04 o'clock - Severity 3		
06.70m	0:01:13	DER	Settled deposits coarse: 100% Cross sectional area loss - Severity 3		
06.70m	0:01:13	REM	General remark END OF PIPE / COLLAPSE	Image Provided - Ref: 2_7	
06.78m		SA	Survey abandoned DEBRIS / END OF PIPE		

Site: CHRISTYS LANE. SHAFTSBURY

Site: CHRISTYS LANE, SHAFTSBURY												Section 4
С	lient:		Location	(Street	t Name):	City/T	own/Village	Cust	Job Ref.	Survey	Surveyors Name: Da	
CHUI RETIREM	RCHILL IENT L	VING	CHRIS	STYSI	LANE	SHA	FTSBURY			Simon	Gardiner	15/05/2023
Start Node	Ref:			F	B Finish No	ode Ref:				F5 Direction:	D Hei	ght/Dia: 150
Start Node Start Node	Depth: Coordi	nate:		0.00	Finish No	ode Depth ode Coord	: inate:		0.	00 Use: Material:	VC Clea	aned N
Node Type	e Cov	ver Cond	ition	Bench	hing Condit	ion	1/2 Channel Condition			Nod	e Condition Rei	marks
MH												
Drain Type	Linin	д Туре	Lining Ma	t. Ye	ear Const.	Weather	Flow Cont.	Length		Gene	eral Remarks	
A						D	N	18.7				
Position	Code	Desc	ription					CD	Pic	Video Ref	1	Om
00.00m	MH	Start	node type	e, ma	inhole						-/	
00.00m	WL	Wate	r level 5	%						0:00:00	-/	
04.30m	RJ	Roots	s at joint							0:00:30	_	
12.29m	CCJ	Cracl	k, circumf	erent	ial 02-06	8 at joint				0:01:23	$\overline{}$	
16.00m	CCJ	Cracl	k, circumf	erent	ial 08-12	2 at joint				0:01:50	$\neg /$	- <u>-</u>
17.20m	CLJ	Cracl	k, longitud	dinal	11 at joir	nt			3_5	0:01:58	-///	8
17.80m	CCJ	Cracl	k, <mark>circum</mark> f	erent	ial 07-05	5 at joint			3_6	0:02:02	-///	
17.80m	CLJ	Cracl	k, longitud	dinal	01 at joir	nt				0:02:04	-///	
18.70m	MHF	Finisl	n node tyj	be, m	anhole				3_99			18.7m
												-

Total Defects for section 0 0 0

1

5

DRB Grade for Section

Descrip	Descriptive Report with Remarks and Observation Images Section 4										
Pos	Video Ref	Code	Description	Image							
00.00m		MH	Start node type, manhole F3								
00.00m	0:00:00	WL	Water level: 5% Height/Diameter								
04.30m	0:00:30	RJ	Roots at joint - Severity 3 TAP ROOTS AT JOINT								
12.29m	0:01:23	CCJ	Crack, circumferential from 02 o'clock to 06 o'clock at joint - Severity 1								
16.00m	0:01:50	CCJ	Crack, circumferential from 08 o'clock to 12 o'clock at joint - Severity 1								
17.20m	0:01:58	CLJ	Crack, longitudinal at 11 o'clock at joint - Severity 1	Image Provided - Ref: 3_5							
17.80m	0:02:02	CCJ	Crack, circumferential from 07 o'clock to 05 o'clock at joint - Severity 1	Image Provided - Ref: 3_6							
17.80m	0:02:04	CLJ	Crack, longitudinal at 01 o'clock at joint - Severity 1								

Descriptive Report with Remarks and Observation Images

DRB Grade for Section

Total Defects for section

Pos	Video Ref	Code	Description	Image
18.70m		MHF	Finish node type, manhole F5	Image Provided - Ref: 3_9999

Site: CHRISTYS LANE, SHAFTSBURY

Site: CH	ite: CHRISTYS LANE, SHAFTSBURY Section 5											
CI	ient:		Location (Street Name):	City/T	own/Village	Cust	Job Ref.	Survey	ors Name:	Date:	
CHUF RETIREM	RCHILL ENT LI	VING	CHRIS	TYS LANE	SHA	FTSBURY			Simon	Gardiner	15/05/2023	
Start Node	Ref:			F5 Finish N	ode Ref:			l	F6 Direction:	D He	ight/Dia: 150	
Start Node	Depth: Coordir	nate:		0.00 Finish N	ode Depth ode Coord	: inate:		0.0	00 Use: Material	F Sha PE Cle	ape: C	
Node Type	Cov	ver Cond	ition	Benching Condit	ion	1/2 Channe	l Conditio	'n	Nod	e Condition Re	emarks	
MH		0. 00.10		2011011119 001101		.,_ 0.10,1110						
Drain Type	Lining	д Туре	Lining Mat.	Year Const.	Weather	Flow Cont.	Length		Gene	eral Remarks		
A					D	N	12.21					
Position	Code	Desc	ription				CD	Pic	Video Ref	1	0m	
00.00m	MH	Start	node type	, manhole						-//		
00.00m	WL	Wate	r level 59	%				0:00:00	_/			
00.40m	DEG	S1 A	ttached de	posits, greas	e 07-05	S1	4_2	0:00:00				
10.35m	WL	Wate	r level 10)%			0:01:20	\neg				
11.45m	DEG	F1 At	ttached de	posits, greas	e 07-05	42	0:00:00	$\neg /$	E T			
11.45m	MC	Mate	rial of drai	n/sewer chan	ges				0:01:28	-///		
11.45m	JN	Junct	tion 06 : 1	50mm Diame	eter			4_5	0:01:27	-///		
12.21m	MHF	Finisl	h node typ	e, manhole							12.21m	

в

Total Defects for section

0

0

0

Descrip	Descriptive Report with Remarks and Observation Images Section 5										
Pos	Video Ref	Code	Description	Image							
00.00m		MH	Start node type, manhole F5								
00.00m	0:00:00	WL	Water level: 5% Height/Diameter								
00.40m	0:00:00	S1 DEG	Attached deposits, grease 0.4m - 11.45m from 07 o'clock to 05 o'clock: 5% Cross sectional area loss - Severity 3	Image Provided - Ref: 4_2							
10.35m	0:01:20	WL	Water level: 10% Height/Diameter								
11.45m	0:00:00	F1 DEG	Attached deposits, grease Defect End from 07 o'clock to 05 o'clock: 5% Cross sectional area loss - Severity 3								
11.45m	0:01:28	MCVC	Material of pipe changes to Vitrified Clay (i.e. all clayware)								
11.45m	0:01:27	JN	Junction at 06 o'clock: 150mm Diameter BACKDROP AT MANHOLE	Image Provided - Ref: 4_5							
12.21m		MHF	Finish node type, manhole F6								

Descriptive Report with Remarks and Observation Images

DRB Grade for Section

Total Defects for section

0

2

0

0

Section 6

в

Page 22

Site: CHRISTYS LANE, SHAFTSBURY

С	lient:		Location	(Street Name):	me): City/Town/Village			t Job Ref.	Surveyors Name:		Date:	
CHUI RETIREM	RCHILL ENT LI	VING	CHRIS	STYS LANE	SHA	FTSBURY			Simon	Gardiner	15/05/2023	•
Start Node Start Node	Ref: Depth:			F3 Finish N 0.00 Finish N	ode Ref: ode Depth	:		SPUR 0.0	A Direction:	U Heig F Sha	pht/Dia: 15	;0 C
Start Node	Coordin	ate:		Finish N	ode Coord	inate:			Material:	PVC Clea	aned	N
Node Type	Cov	er Cond	ition	Benching Condit	ion	1/2 Channe	l Conditio	on	Node	e Condition Re	marks	
			1									
Drain Type	Lining	д Туре	Lining Mat	t. Year Const.	Weather	Flow Cont.	Length		Gene	ral Remarks		_
A					D		13.08			1	Om	
	Code MH	Desc	ription	manholo			CD	Ріс	Video Ref		- Children	
00.00m	WI	Wate	noue type	%					0.00.00			
00.40m		Line	of drain/se	 ewer deviates	right [he	alf]			0:00:00			
00.40m	DEG	S1 A	ttached de	eposits, greas	e 01-11	5%	S1		0:00:18			
12.75m	DEG	F1 At	ttached de	eposits, greas	e 01-11	5%	F1		0:00:18	\neg	A SA	
13.08m	MHF	Finisl	h node typ	oe, manhole				5_99		_/		
										//		
										//	13.08m	
											10.0000000000	
Total De	fects	for sec	tion							DRB Gra	de for Sect	_ tior

2

0

0

0

Descrip	Descriptive Report with Remarks and Observation Images								
Pos	Video Ref	Code	Description	Image					
00.00m		MH	Start node type, manhole F3						
00.00m	0:00:00	WL	Water level: 5% Height/Diameter						
00.40m	0:00:00	LRH	Line of drain/sewer deviates right [half]						
00.40m	0:00:18	S1 DEG	Attached deposits, grease 0.4m - 12.75m from 01 o'clock to 11 o'clock: 5% Cross sectional area loss - Severity 3						
12.75m	0:00:18	F1 DEG	Attached deposits, grease Defect End from 01 o'clock to 11 o'clock: 5% Cross sectional area loss - Severity 3						
13.08m		MHF	Finish node type, manhole ENTERS MANHOLE F7	Image Provided - Ref: 5_9999					

Descriptive Report with Remarks and Observation Images

DRB Grade for Section

0

0

Section 7

Page 24

Site: CHRISTYS LANE, SHAFTSBURY

/05/2023 ia: 225 C
ia: 225 C
11
S
m
r
2
8
2.4m
m 2.4m

в

0

Total Defects for section

0

8

0

Descri	otive Repo		emarks and Observation	
Pos	Video Ref	Code	Description	Image
00.00m		MH	Start node type, manhole 8103	
00.00m	0:00:00	WL	Water level: 0% Height/Diameter	
00.40m	0:00:17	S1 DES	Settled deposits fine 0.4m - 62.4m: 5% Cross sectional area loss - Severity 3	
04.30m	0:00:31	RJ	Roots at joint - Severity 3 FINE ROOTS AT JOINT	Image Provided - Ref: 6_3
06.40m	0:00:45	RJ	Roots at joint - Severity 3 TAP ROOTS AT JOINT	Image Provided - Ref: 6_4
16.75m	0:02:11	СХ	Defective connection at 10 o'clock: 100mm Diameter - Severity 3	Image Provided - Ref: 6_5

0

_

Descriptive Report with Remarks and Observation Images

DRB Grade for Section

в

Total Defects for section

Pos Video Ref Code Description Image Image Provided - Ref: 6_6 36.00m 0:04:46 RJ Roots at joint - Severity 3 FINE ROOTS 8001 2.25mm SURFACE **DOWNSTREAM** 36.90m Image Provided - Ref: 6_7 Roots at joint - Severity 3 38.70m 0:05:00 RJ FINE ROOTS AT JOINT 2.25mm SURFACE DOWNSTREAM 38.71m Image Provided - Ref: 6_8 46.60m 0:06:04 RJ Roots at joint - Severity 3 ROOTS AT JOINT 8103 - 8001 SURFACE DOWNSTREAM 46.65m 62.40m F1 DES Settled deposits fine Defect 0:00:17 End: 5% Cross sectional area loss - Severity 3 62.40m SA Survey abandoned END OF SURVEY **REQUIREMENT / UNABLE TO** PUSH CAMERA FURTHER

Section 8

Page 27

Site: CHRISTYS LANE, SHAFTSBURY

Cli	ient:		Location	(Street	Name):	City/T	own/Village	Cust	Job Ref.	Surveyors Name:			Dat	te:
CHUR RETIREMI	RCHILL ENT LI\	/ING	CHRI	STYS L/	ANE	SHA	FTSBURY			Sim	ion Gardiner		15/05/	2023
Start Node F	Ref:			F4	Finish N	ode Ref:			81	02 Directio	on: D	Heig	ht/Dia:	150
Start Node I	Depth:	ato:		0.00	Finish N	ode Depth	: inato:		0.	00 Use:	F	Shap)e:	C
Node Type		ar Cond	lition	Benchi			1/2 Channe			Materia	al. ^		narke	
MH	000			Denchi			1/2 Onanne	Conditio				II IXEI	101 13	
Drain Type	Lining	Туре	Lining Ma	t. Yea	r Const.	Weather	Flow Cont.	Length	Length General Remarks					
A						D	N	39.42						
Position	Code	Desc	ription					CD	Pic	Video Re	əf	Λ	0m	
00.00m	MH	Start	t node type, manhole											
00.00m	WL	Wate	er level 5	0%						0:00:00	_/	//		
00.40m	CUW	S1 Lo	oss of visi	on, ca	mera ur	nder wat	er	S1		0:00:13	-//	// /		
00.40m	REM	S2 G	eneral re	mark				S2	7_6	0:00:46	_//			
02.50m	CUW	F1 Lo	oss of visi	on, ca	mera ur	nder wat	er	F1		0:00:13	_//			
02.50m	WL	Wate	er level 3	0%		- 4 - 4		00	7.4	0:00:12		//		
02.50m	DEE	53 A	ttached d	eposit	s, encru	station (7_4	0:00:12	_//					
08.50m	DEE	F3 A	ttached d	eposite	s, encru		J7-05 20%	F3	74	0:00:12				
31.96m		J4 A	of drain/s		s, encru		$07-05\ 50\%$	34	7_3	0.00.40				27
31.90m		loint				ieit [qua	arterj		78	0.03.50	_/			7
33.80m	IRQ	Line	of drain/s	ewer	leviates	riaht [aı	uarterl		79	0.04.06	_/			
35.90m	LRQ	Line	of drain/s	ewer c	leviates	riaht lau	uarter]		1_0	0:04:31	_/	\mathbb{N}		
37.80m	LLQ	Line	of drain/s	ewer c	leviates	left [qua	arter]			0:04:44	_/	\mathbb{N}		
39.00m	DEE	F4 At	ttached d	eposite	s, encru	station (- 07-05 30%	F4	75	0:00:46	_/	///		
39.00m	DEE	Attac	hed depo	sits, e	ncrustat	ion 07-(05 50%		7_12	0:04:58	_/	$\langle \rangle$		
39.42m	SA	Surve	ey abando	oned							_	Ŋ	39.42	!m
												7		

DRB Grade for Section

Descrip	Descriptive Report with Remarks and Observation Images Section 8									
Pos	Video Ref	Code	Description	Image						
00.00m		MH	Start node type, manhole F4							
00.00m	0:00:00	WL	Water level: 50% Height/Diameter							
00.40m	0:00:13	S1 CUW	Loss of vision, camera under water 0.4m - 2.5m							
00.40m	0:00:46	S2 REM	General remark 0.4m - 0m POSSIBLE DEFORMED PITCH FIBRE PIPE	Image Provided - Ref: 7_6						
02.50m	0:00:13	F1 CUW	Loss of vision, camera under water Defect End							
02.50m	0:00:12	WL	Water level: 30% Height/Diameter							
02.50m	0:00:12	S3 DEE	Attached deposits, encrustation 2.5m - 8.5m from 07 o'clock to 05 o'clock: 20% Cross sectional area loss - Severity 3	Image Provided - Ref: 7_4						
08.50m	0:00:12	F3 DEE	Attached deposits, encrustation Defect End from 07 o'clock to 05 o'clock: 20% Cross sectional area loss - Severity 3							

0

_

0

Descriptive Report with Remarks and Observation Images

DRB Grade for Section

в

0 0

6

Total Defects for section

Pos	Video Ref	Code	Description	Image
08.50m	0:00:46	S4 DEE	Attached deposits, encrustation 8.5m - 39m from 07 o'clock to 05 o'clock: 30% Cross sectional area loss - Severity 3	Image Provided - Ref: 7_5
31.96m	0:03:50	LLQ	Line of drain/sewer deviates left [quarter]	
31.96m	0:03:50	JDM	Joint displaced medium - Severity 3	Image Provided - Ref: 7_8
33.80m	0:04:06	LRQ	Line of drain/sewer deviates right [quarter]	Image Provided - Ref: 7_9
35.90m	0:04:31	LRQ	Line of drain/sewer deviates right [quarter]	
37.80m	0:04:44	LLQ	Line of drain/sewer deviates left [quarter]	

Total Defects for section

0

DRB Grade for Section

в

0

6

0

Page 30

Pos	Video Ref	Code	Description	Image
39.00m	0:00:46	F4 DEE	Attached deposits, encrustation Defect End from 07 o'clock to 05 o'clock: 30% Cross sectional area loss - Severity 3	
39.00m	0:04:58	DEE	Attached deposits, encrustation from 07 o'clock to 05 o'clock: 50% Cross sectional area loss - Severity 3	Image Provided - Ref: 7_12
39.42m		SA	Survey abandoned UNABLE TO PASS ENCRUSTATION	

A guide to defects and other observations in drainage systems

More detailed information can be found in the National Standard (BS EN 13508-1:2003) and in the Manual of Sewer Condition Classification (MSCC) 5th Edition, written by the Water Research Centre (WRc).

Use				
Code	Description			
С	Combined			
F	Foul			
S	Surface Water			
Т	Trade Effulent			
W	Culverted Watercourse			
Z	Other			
Common Materials				
Code	Description			
VC	Vitrified Clay			
PVC	Polyvinyl Chloride			
СО	Concrete			
CI	Cast Iron			
PF	Pitch Fibre			
PE	Polyethylene			
DI	Ductile Iron			

Start Node	Description	Finish Node
MH	Manhole	MHF
IC	Inspection Chamber	ICF
GY	Gulley	GYF
RE	Rodding Eye	REF
SK	Soakaway	SKF
BN	Buchan Trap	BNF
BR	Major Connection without Ref	BRF
СР	Cacth Pit	CPF
OC	Other Special Chamber	OCF
OF	Outfall	OFF
OS	Oil Seperator	OSF
WR	Major Connection without mh	WRF
LH	Lamphole	LHF

Code	Observation	Description	Attributes	
В	Broken	Pieces pipe have visibly moved	Defined by clock references. Associated with deformity in rigid pipe	\bigcirc
CC CL CM CR	Cracks	Cracks are break lines that are not visibly open	Defined by clock reference position/s. Longitudinal and radiating cracks attract only one clock reference	
CN	Connection	Lateral pipe has been connected after original construction	Described by clock reference position and diameter	O

CX(I)	Defective Connection (Intruding)	Defective by intrusion or damage due to factors including: cracks, fractures, obstruction, position etc	Described by clock reference position and diameter (+ % intrusion)	
си	Loss of Vision	Lens of camera is obscured by debris, water etc. Operator is unable to see drain clearly	'W' can be added if loss of vision is due to wate	
D	Deformed	Pipe has lost its structure	Described by percentage loss of height or width. Recorded in 5% increments	20%
DEE	Deposits Encrustation	Eg. Attached scale deposits evident	Described by clock referenced position and percentage loss of cross- sectional area (5% increments)	1095
DEG	Deposits Grease	Attached grease deposits evident	Described by clock referenced position and percentage loss of cross- sectional area (5% increments)	20%
DER DES	Deposits Coarse/Fine	Settled deposits on the invert of the pipe.	Described by percentage loss of height or diameter. Recorded in 5% increments.	10% 20% 35%
FC FL FM FR	Fractures	Fractures are visibly open. Pieces of pipe have not moved	Defined by clock reference position/s. Longitudinal and radiating fractures attract only one clock reference	
н	Holes	Section of pipe fabric is missing	Defined by clock reference location. Normally two clock references	
1	Infiltration	Water is infiltrating the pipe, normally via a joint but could be via another defect	Can be described in Remarks using terms such as Seeper, Dripper and Runner	Control of the second s
JDL	Joint Displaced Large	Pipe has moved at joint, perpendicular to axis of pipe	More than 1.5 times the pipe wall thickness must be visible	

в

6

0

JDM	Joint Displaced Medium	Pipe has moved at joint, perpendicular to axis of pipe	Between 1 and 1.5 times the pipe wall thickness must be visible	
JN	Junction	Lateral pipe was installed at construction	Described by clock reference position and diameter	0
JX	Defective Junction	Lateral pipe was installed at construction but is defective in some way	Joint can be defective due to factors including: cracks, fractures, obstruction, position etc	C S
LD LU LL LR	Line Deviation	LD = Line Down, LU = Line Up, LL = Line Left, LR = Line Right. Not related to CIPP lining.	Additional modifiers are added: Q = Quarter (22.5), H = Half (45), F = Full (90). In degrees.	
LC	Lining Changes	If the drain is lined, the lining material has changed	Position of lining material change	
МС	Material Change	The pipe material has changed	Position of change is noted. Type of material change can be defined	8
OB	Obstruction/Ob stacle	An obstruction or obstacle is affecting the flow through the pipe	Described in percentage loss of cross-sectional area	30%
OJL	Open Joint Large	Pipe has moved at joint, along the axis of pipe	More than 1.5 times the pipe wall thickness must be visible	
OJM	Open Joint Medium	Pipe has moved at joint, along the axis of pipe	Between 1 and 1.5 times the pipe wall thickness must be visible	8
PC	Pipe Length Changes	Length of individual pipe changes	New length described at this position	8

DRB Grade for Section

R	Roots	Evidence of root ingress	Roots will normally infiltrate via bad joints, cracks, fractures, breaks etc	
REM	Remark	General remark	Used for additional information	
S	Surface Damage	This might include corrosion, spalling and chemical attack	Position only. Additional information can be added in Remarks	
SA	Survey Abandoned	Used when a survey cannot continue for any reason	The reason for abandoning a survey should be noted in the remarks area	
SC	Shape Changes	Dimension of drain changes	Diameter dimension change recorded. Second dimension is recorded for no circular pipe changes	8
SR	Sealing Ring	Sealing ring intrudes into pipe at joint	Described by clock reference position	
v	Vermin	Evidence of Vermin in pipe	Can also be used for evidence within manhole etc	
WL	Water Level	Used to record changes in water level. Always shown at the beginning of every survey, if dry noted as 00.	Described by percentage of height or diameter. Recorded in 5% increments	25% 50% 75%
ХР	Collapsed	Drain is suffering from complete loss of structural integrity. Always followed by SA - Survey Abandoned	Percentage loss of cross- sectional area is recorded. Other related structural defects are not recorded	80%

REGISTER OF APPENDICES

- A. MANHOLE INSPECTION REPORT
- B. COPIES OF SITE HAND WRITTEN DAILY RECORD SHEETS
- C. ANNOTATED SITE DRAWINGS

UTILITY SURVEYS LTD

5 SUFFOLK ROAD MALDON ESSEX CM9 6AX

LOCATION: LIDL

LIDL SITE CHRISTYS LANE SHAFTSBURY

_ JOB REF: 071510

UTILITY SURVEYS LTD

5 SUFFOLK ROAD MALDON ESSEX CM9 6AX

LOCATION: LIDL SITE CHRISTYS LANE SHAFTSBURY

JOB REF: 071510

CLIENT:	CHURCHILL RETIREMENT LIVING	G DAT	E: 28/04/2023 and 15/05/2023
MH No. F6 DEPTH. COVER. CONSTRUCTION. REMARKS.	BURIED IN DENSE VEGETATION	MH No. S6 DEPTH. 0.70 COVER. RM CONSTRUCTION. Co REMARKS.	100Ø ↓ 100Ø → ↓ 100Ø 100Ø
MH No. F7 DEPTH. 1.41 COVER. SH CONSTRUCTION. Co Ring REMARKS.	100Ø 150Ø 150Ø 150Ø 150Ø	MH No. HW1 DEPTH. 0.94 COVER. RM CONSTRUCTION. Br REMARKS.	225Ø 225Ø 225Ø
MH No. 9001 DEPTH. 1.48 COVER. SH CONSTRUCTION. Br REMARKS.	225Ø 150Ø 225Ø		
KEY: C S T	- Circular L - Lig - Square M - M - Triangular H - He	ght Duty edium Duty eavy Duty	Co - Concrete Br - Brick R - Rectangular

MH F2 UPSTREAM, NOT BENCHED

2 x PITS on NORTH EAST BOUNDARY 1.92m DEEP

MH S6 LOCATION

MH F3 COVER

MN F7 IN TESCO'S

MH 9001 IN ROUNDABOUT

CCTV Sewer Survey – Daily Record Sheet

Date Client Site Address Rig Manage		104/2 DL S HRIST HAFT RDINER	023 ILCRE TYS SBUR Ope	Job No	071510 AENSTZIANG E R7872 I. CAMPBELL	5 Suffolk Road Maldon Essex CM9 6AX
Mant	nole	Sewer	Recorded	Survey	Remarks	~
Start	Finish	dia.	Metreage	Abandoned		
F2	FL	225	61-80	- /		0
FZ	FS	150	13-08	/	UNADETO	PUSH FURTHER
					.+	
	1	1				
						and the second se
		TOTAL				
Stonding Ti-				Mo		Length OK
Standing Th						
Reason for s	standing tim	ne				
Remarks	BN	OTF	ound c	RREAC	CHED OVER-	TESCO LAND
			1			
						i.

CCTV Sewer Survey – Daily Record Sheet

Date Client Site Addres Rig Manag	IS/C	DL RCHI DL RLST AFTE DINER	223 LRETI SITE 75 LAC SBGR Ope	Job No	OTISIO-OR STAILING	5 Suffolk Road Maldon Essex CM9 6AX
						Tel: 07971910370
Mar Start	hole Finish	Sewer dia.	Recorded Metreage	Survey Abandoned	Remarks	
56	MAIN	100	6-78		DEBRIST	ND OF PIPE
F3	ES	150	18-70		1	
FS	F6	150	12-21			
F3	SPURA	150	13-08		MHOLE	
8103	8001	225	62-40			
FA	8102	150	39-A2	/	ENCRUST	ALION
		TOTAL				
Standing T	ime			Met		Length OK
Reason for	standing time	э				
Remarks		1		_		coat us a
56- 810 F4- 8102	- MAIN 3 - 80 -8102 - F4	2 UN 201 209 209	JABLE NOO CO SIGLE DO G ENOC	TO C PORME CRUST	CTION REOM ED PITCH F ATTON	MHS6 IBRE
				11-2	9 4 A A	

Appendix E Wessex Water Sewer Records and correspondence

Response to: <u>clare.du</u>	incan@nrswa.net (Develo	per Respor	nse)
Planning Ref:	N/A	Email:	Planning.liaison@wessexwater.co.uk
Proposal:	Foul and SW capacity check for 38 retirement apartments	Our Ref:	ST82SE/ 73
Location:	Land at Christy's Lane, Shaftesbury, SP7 8TL	Date:	26 April 2023

Existing Services

There are no known Wessex Water assets within the proposed site boundary.

The 150mm diameter foul sewer you refer to in your email and as shown on the Lidl Food store, Site Layout, Site Drainage drawing, drawing ref 3021, Rev As Built 2, dated June 2020, submitted with your enquiry, is not recorded on our system. Further to this, we would advise that none of on-site foul and surface water sewers serving the Lidl store and shown on this drawing are recorded on our systems, we have no record of any of the services being offered for adoption and would, therefore, assume they have remained in private ownership.

You will need to negotiate with the private owner with regards to diversion or connection to this foul sewer. Please be aware that if subsequently you wish to offer the on-site services for your development for adoption, and the existing foul sewer serving Lidl Store remains within the site boundary, it will be your responsibility to ensure that it meets adoptable standards. Further to this, if you should wish to offer for adoptions, we would require a 3m standoff either side of the 150mm diameter foul with no building within the standoff and no tree planting within 6m.

With reference to your question regarding the soakaway pits shown on the Lidl Proposed Site Plan Overlay Rev B and visible within the photographs you have provided. Again, we have no record of these and therefore, assume they remain in private ownership.

A map showing all known Wessex Water Assets within the area of the proposed site is attached at the bottom of this response. Additional maps can be obtained from our website <u>Mapping enquiries (wessexwater.co.uk)</u>

Foul Drainage

Wessex Water will accommodate domestic type foul flows in the public foul sewer with connections made on a size for size basis, Developers fund the cost of connecting to the nearest 'size for size' sewer. The minimum diameter receiving sewer to meet size for size principles for a development of this magnitude is 150mm.

Capacity is available to accommodate the foul flows from the proposed development, the nearest public foul sewer of suitable diameter or greater is the 225mm diameter located on Christy's Lane.

The point of connection to the public network is by application and agreement with Wessex Water.

Please Note: No surface water runoff, land drainage or ground water will be accepted into the foul sewer either directly or indirectly.

Surface Water Drainage (rainwater falling onto, and running off, impermeable surfaces)

Surface water runoff will need to be managed in accordance with the SuDs hierarchy and NPPF. Wessex Water will be looking for a full suite of SuDS components to be considered and included in the proposals for the capture, storage and discharge of surface water runoff. Discharge rates and volumes will need to be agreed and approved by the LLFA.

National planning policy requires SuDS to provide multifunctional benefits, where possible. There are four main categories of benefits that can be achieved by SuDS: water quantity, water quality, amenity and biodiversity. These are referred to as the four pillars of SuDS design.

If you are able to demonstrate, beyond reasonable doubt, that all other options within the SuDS Hierarchy are not viable, we will consider a connection to the 225mm diameter public surface water sewer located on Christy's Lane approximately 92m southeast of the site. Discharge rates and volumes will need to be agreed, please note this will be at a minimum 30% betterment over greenfield runoff rate.

Please Note: No surface water runoff, land drainage or ground water will be accepted into the foul sewer either directly or indirectly.

Water Infrastructure

Wessex Water will provide a point of connection for new water mains to be laid into the development site, either through a Section 41 agreement or a self-lay arrangement.

Developers may connect to our water network on a size for size basis at their cost and Wessex Water will undertake any network reinforcement that may be required to accommodate granted development, this is funded through our infrastructure charging arrangements. Upon grant of planning Wessex Water will undertake a modelling exercise to determine the impact on our network and manage any necessary improvements.

The nearest supply main of appropriate diameter is the 125mm approximately 45m southeast of the site.

Please Note: On site private storage and pump systems will be required for buildings greater than 2 storeys high. No guarantee can be given on a specific pressure or to maintaining that pressure. Normally it will be no less than 10m head of water. (1 bar pressure at 9 litres a minute) on the property boundary.

For more details and guidance for applying to connect to our networks please see our website: <u>https://www.wessexwater.co.uk/services/building-and-developing/building-multiple-properties-or-large-developments</u>

New Appointments and Variations (NAVs)

The NAV Market enables developers to choose their water and sewerage undertaker for a specific geographic area.

For developers wishing to consider an alternative supplier or seeking further information, a full list of appointees and further guidance can be found on the <u>Wessex Water</u> and <u>Ofwat website</u>.

Invert and Sewer Levels

Details of invert and sewer levels can be obtained from our Asset Mapping Team, they can be contacted on <u>asset.enquiries@wessexwater.co.uk</u>

ST82SE/ 73 ASSET MAP

ST82SE/73 ASSET MAP

Wessex Water Network Map

Reproduced from the Ordnance Survey map by permission on behalf of the Controller of Her Majesty's Stationery Office © Crown Copyright . Licence 100019539.

WATER MAINS	SEWERS STRATEGIC PUBL	IC PRIVATE SECTION 104 OTHER WESSE	X PIPES NON-WESSEX / UNKNOWN
Distribution	Foul 🛑 —	Rising	Mains Private Rising Mains
\\/ashaut	Surface 🗾 🔁 ——	→ · · · · · · · · · · · · · · · · · · ·	by Rising Mains=:=:=:(W::=:: Culverted Watercourse
	Combined 💶 🗩 ——	►	nt Disposal ————————————————————————————————————
Raw Water	Abandoned	x × × → N Overf	low ——?— Use Unknown
Abandanad	Colours generally indicate the use of the s	ewer/drain (i.e Red - Foul, Dark Blue - Surface,SSyphc	onSU Status Unknown
Abandoneu	Magenta - Combined/Dual Use, Light Gree	n - Highway Drain, Mid Green - Overflow).	
· Private	Some styles of line and symbol are shown	on the key in sample/typical colours.	OTHER STRUCTURES Chamber
FITTINGS	STRUCTURES	A Pumping Station - Surface	Attenuation Tank Tunnel
	Manhole - Foul	Pumping Stn - Foul/Combined	📃 Storage Tank 📃 Interceptor
Hydrant	 Manhole - Surface 	📩 Gully	
Other	Manhole - Combined	Vent Column	
- Other	– –) Inlet – – Outfall	Rodding Eye	
	🗄 Lamphole	Catchpit	Morcov Mator
	Bifurcation - Foul	Flushing Chamber	wessex water
	Bifurcation - Surface	👌 Soakaway	
	Bifurcation - Combined	Non Return Valve	TTE GROOT
	Combined Sewage Overflow	♦ Air Valve	
Information in this map is provided for it	entification purposes only. No warranty as to accuracy is g	iven or implied. The precise route of pipe work may not exactly match that shown.	Date: 09/05/2023
Regulations 2011 are to be plotted over	ime and may not yet be shown. In carrying out any works	you accept liability for the cost of any repairs to Wessex Water apparatus damaged	Contro: 286885 122000
as a result of your works. You are advised	to commence excavations using hand tools only. Mechan	ical digging equipment should not be used until pipe work has been precisely located.	
It you are considering any form of building plot its exact position prior to commence	g works and pipe work is snown within the boundary of y	our property or a property to be purchased (or very close by) a surveyor should	Scale: 1:625
piot its class position prior to commercia	ng works or nurchase it voll are proposing to nullid over o	near Wessey Water's annaratus you should contact the Developer Services Jeam	

Appendix F Greenfield Runoff Calculation

\boldsymbol{h}	\sim					G	reenfield runoff	rate
hrwalling	ford						estimation for s	sites
Coloulated hus	Rep Cre					www	.uksuds.com Greenfield run	off tool
Calculated by:	Ben Gre	en				Site Det	ails	
Site name:	Land at Shaftes	Christy's L sbury	ane,			Latitude:	51.00723° N	
Site location:	Shaftes	sbury				Longitude:	2.18932" W	
This is an estimation Agency guidance "Ra non-statutory stand consents for the dra	of the gre ainfall runot lards for Su ainage of su	enfield runot If manageme DS (Defra, 20 urface water	ff rates that ar ant for develop 115). This inform runoff from sit	e used to m ments", SC(nation on gr res.	ieet no)30219 eenfie	rmal best practice criteria in line with Environment Reference: (2013) . the SuDS Manual 0753 (Ciria, 2015) and the Id runoff rates may be the basis for setting Date:	3033308586 Jul 20 2023 15:40	
Runoff estir approach	matior	ı	FEH St	atistical				
Site charac	teristi	cs			No	tes		
Total site area (h	a): ¹				(1)			
Methodolog	σv				(1)	IS QBAR < 2.01/S/112?		
Q _{MED} estimation r	nethod:	Calculate	e from BFI ar	Id SAAR	W	hen Q_{BAR} is < 2.0 l/s/ha then limiting discharge		
BFI and SPR meth	od:	Specify B	3FI manually		ra	ates are set at 2.0 l/s/ha.		
HOST class:		N/A						
BFI / BFIHOST:		0.636			(2)	Are flow rates < 5.0 l/s?		
Q _{MED} (I/s):					W	here flow rates are less than 5.0 l/s consent		
Q _{BAR} / Q _{MED} factor	r	1.14			fc	or discharge is usually set at 5.0 l/s if blockage		
					Lo	ower consent flow rates may be set where the		
Hydrologica	al stics				b	lockage risk is addressed by using appropriate		
SAAR (mm):		870	auit 87	o 0	d	rainage elements.		
		7	7					
Hydrological regi	on:				(3)	Is SPR/SPRHOST ≤ 0.3?		
Growth curve fac	tor 1 yea	. 0.85	0.3	35	w	here groundwater levels are low enough the		
Growth curve fac years:	tor 30	2.3	2.5	3	u	se of soakaways to avoid discharge offsite		
Growth curve fac	tor 100	3.19	3.	19	w	ould normally be preferred for disposal of		
Growth curve fac	tor 200	3.74	3.	74	s	urrace water runott.		
years:								
Greenfield	runoff	rates	Default	Edit	ed	Net Dev. 0.252 ha		
Q _{BAR} (I/s):			boldan	3.5	ou	OBAR = 0.88 I/s		
1 in 1 year (l/s):		-		2.97				
1 in 30 years (l/s)	:	-		8.04		Q2 = 0.77 l/s		
1 in 100 year (l/s):	:			11.15		Q30 = 2.03 l/s		
1 in 200 years (l/s	s):	-		13.07		Q100 = 2.81 l/s		

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

Appendix G Proposed Site Plan

	REVISIONS
	Rev. Date By
	NORTH
	1 BED APARTMENTS = 27
	2 BED APARTMENTS = 14 TOTAL = 41
	CHURCHILL RETIREMENT LIVING
	planning issues
	town planning and architectural design Rob Jackson RIBA
	Churchill House * Parkside Ringwood * Hampshire BH24 3SG Telephone: (01425) 462109
	Fax : (01425) 462101 E-mail design@planningissues.co.uk
	Client
	Churchill
Ar /	
	Project Title Retirement Living Apartments
	Christys Lane Shaftesbury
	FRUPUSED SITE PLAN
	Scale 1:200 @ A1 Date AUG 23 Drawn MJS Checked RJ

Appendix H Causeway Flow Model outputs

		1110	. 1332-A-All	enuation nequ	anemen		
Ad 🔁	la House	Network: Storm Network					
	nes Hill	Ber	n Green				
EX	eter EX2 410	11/	08/2023				
			Design Set	<u>ttings</u>			
	Rainfall Metho	dology	FEH-13	Mir	nimum Ve	locity (m/s	1.00
	Return Period	(years)	100		Conn	ection Type	e Level Soffits
	Additional Fl	ow (%)	45	Minimum	Backdrop	Height (m	0.200
		CV	0.750	Prefer	red Cove	r Depth (m	1.200
N	Lime of Entry	(mins)	5.00	Include I	ntermedi	ate Ground	
IN	Maximum Bainfall (n	nm/hr)	50.00	Emore best	practice	Jesigirrules	
		,,	Nede	_			
			Nodes	<u>s</u>			
	Name	Area	T of E C	over Diam	eter De	epth	
		(ha)	(mins) L	.evel (mı (m)	m) (m)	
	Soakaway	0.147	4.00 10	(III))0.000 1	200 2	.000	
	country	0.2.17					
		<u>:</u>	Simulation S	Settings			
Ra	infall Methodology FEH-13		Skip Stead	dv State x	С	heck Discha	arge Volume √
	Summer CV 0.750	Draiı	n Down Time	e (mins) 200	0 10	0 year 360	minute (m ³)
	Winter CV 0.840	Additio	onal Storage	(m³/ha) 20.0	C		
	Analysis Speed Normal	Chee	ck Discharge	Rate(s) √			
			Storm Dura	ations			
	15 60 180 3	60 6	Storm Dura	ations 2160	4320	7200	10080
	15 60 180 3 30 120 240 4	60 6 80 7	Storm Dura 00 960 20 1440	ations 2160 2880	4320 5760	7200 8640	10080
	15 60 180 3 30 120 240 4	60 6 80 7	Storm Dura 00 960 20 1440	ations 2160 2880	4320 5760	7200 8640	10080
	15 60 180 30 30 120 240 4 Return Period (years)	60 6 80 7 Climate ((CC	Storm Dura 00 960 20 1440 Change Ad %) Additional Additeta Additional Additiona Additiona Additiona Additi	ations 2160 2880 dditional Area (A %)	4320 5760 Additio	7200 8640 onal Flow Q %)	10080
	15 60 180 3 30 120 240 4 Return Period (years) 2	60 6 80 7 Climate ((CC	Storm Dura 00 960 20 1440 Change Ad %) 45	ations 2160 2880 dditional Area (A %) 0	4320 5760 Additic	7200 8640 onal Flow Q %) 0	10080
	15 60 180 3 30 120 240 4 Return Period (years) 2 30	60 6 80 7 Climate ((CC	Storm Dura 00 960 20 1440 Change Ad %) 45 45 45	ations 2160 2880 dditional Area (A %) 0 0	4320 5760 Additio ((7200 8640 onal Flow Q %) 0 0	10080
	15 60 180 3 30 120 240 4 Return Period (years) 2 30 100	60 6 80 7 Climate ((CC	Storm Dura 00 960 20 1440 Change Ad %) 45 45 45 45 45	ations 2160 2880 dditional Area (A %) 0 0 0 0	4320 5760 Additic	7200 8640 0nal Flow Q %) 0 0 0 0	10080
	15 60 180 3 30 120 240 4 Return Period (years) 2 30 100	60 6 80 7 Climate ((CC	Storm Dura 00 960 20 1440 Change Ad %) 45 45 45 45 45 velopment D 20	ations 2160 2880 dditional Area (A %) 0 0 0 Discharge Rate	4320 5760 Additio (0	7200 8640 0nal Flow Q %) 0 0 0	10080
	15 60 180 3 30 120 240 4 Return Period (years) 2 30 100	60 6 80 7 Climate ((CC <u>Pre-dev</u>	Storm Dura 00 960 20 1440 Change Ad %) 45 45 45 velopment D Greenfield	ations 2160 2880 dditional Area (A %) 0 0 0 0 0 0 0 0 0 0 0 0 0	4320 5760 Additio (0	7200 8640 0 onal Flow 0 0 0 0	10080
	15 60 180 30 30 120 240 40 Return Period (years) 2 30 100 Site Greenfield	60 6 80 7 Climate ((CC <u>Pre-dev</u> Makeup	Storm Dura 00 960 20 1440 Change Ad %) 45 45 45 45 45 45 45 Greenfield FEH	ations 2160 2880 dditional Area (A %) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4320 5760 Additi (1 2 2 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	7200 8640 0 onal Flow Q %) 0 0 0 30 year 1 00 year 2	10080 .95 .48
	15 60 180 3 30 120 240 4 Return Period (years) 2 30 100 Site Greenfield Positively Drained	60 6 80 7 Climate ((CC <u>Pre-dev</u> Makeup I Method Area (ha)	Storm Dura 00 960 20 1440 Change Ad %) 45 45 45 velopment D Greenfield FEH 0.252	ations 2160 2880 dditional Area (A %) 0 0 0 0 0 0 0 0 0 0 0 0 0	4320 5760 Additio (1 h Factor 1 Factor 10 Betterm	7200 8640 onal Flow Q %) 0 0 0 30 year 1 00 year 2 ent (%) 0	.95 .48
	15 60 180 3 30 120 240 4 Return Period (years) 2 30 100 Site Greenfield Positively Drained A SA	60 6 80 7 Climate ((CC <u>Pre-dev</u> Makeup I Method Area (ha) AR (mm)	Storm Dura 00 960 20 1440 Change Ad %) 45 45 45 45 45 velopment D Greenfield FEH 0.252 869 869	ations 2160 2880 dditional Area (A %) 0 0 0 0 Discharge Rate d Growth	4320 5760 Additio (d	7200 8640 0 onal Flow Q %) 0 0 0 30 year 1 00 year 2 ent (%) 0 QMed	10080 .95 .48
	1560180303012024044Return Period (years)230100Site Greenfield Positively Drained A SA	60 6 80 7 Climate ((CC <u>Pre-dev</u> Makeup I Method Area (ha) AR (mm) Host	Storm Dura 00 960 20 1440 Change Ad %) 45 45 45 45 45 45 45 6 Greenfield FEH 0.252 869 1	ations 2160 2880 dditional Area (A %) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4320 5760 Addition (f the factor 1 Factor 1 Betterm	7200 8640 0nal Flow Q %) 0 0 0 0 30 year 1 00 year 2 ent (%) 0 QMed QBar	10080 .95 .48
	1560180303012024044Return Period (years)230100100Site Greenfield Positively Drained J SA	60 6 80 7 Climate ((CC Pre-dev Makeup I Method Area (ha) AR (mm) Host BFIHost	Storm Dura 00 960 20 1440 Change Ad %) 45 45 45 velopment D Greenfield FEH 0.252 869 1 0.636 7	ations 2160 2880 dditional Area (A %) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4320 5760 Addition (f h Factor 1) Betterm Q 1 ye	7200 8640 000 Flow Q %) 0 0 0 0 30 year 1 00 year 2 ent (%) 0 QMed QBar ear (I/s)	10080 .95 .48
	15 60 180 30 30 120 240 40 Return Period (years) 2 30 100 Site Greenfield Positively Drained A SA	60 6 80 7 Climate ((CC <u>Pre-dev</u> Makeup Method Area (ha) AR (mm) Host BFIHost Region	Storm Dura 00 960 20 1440 Change Ad %) 45 45 45 45 45 velopment D Greenfield FEH 0.252 869 1 0.636 7 1 136 1	ations 2160 2880 dditional Area (A %) 0 0 0 0 0 0 0 0 0 0 0 0 0	4320 5760 Addition (d) Factor 10 Betterm Q 1 ye Q 30 ye	7200 8640 0nal Flow Q %) 0 0 0 0 30 year 1 00 year 2 ent (%) 0 QMed QBar ear (l/s) ear (l/s)	10080 .95 .48
	15 60 180 3 30 120 240 4 Return Period (years) 2 30 100 Site Greenfield Positively Drained A SA QBar/QMed conversi Growth Fact	60 6 80 7 Climate ((CC Pre-deu Makeup I Method Area (ha) AR (mm) Host BFIHost Region on factor or 1 year	Storm Dura 00 960 20 1440 Change Ad %) 45 45 45 45 45 velopment D 6 FEH 0.252 869 1 0.636 7 1.136 0.85	ations 2160 2880 dditional Area (A %) 0 0 0 0 0 0 0 0 0 0 0 0 0	4320 5760 Additio (d b Factor 1 Factor 1 Betterm Q 1 ye Q 30 ye Q 100 ye	7200 8640 000 Flow Q %) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10080 .95 .48
	1560180303012024044Return Period (years)230100230100Site Greenfield Positively Drained A SAQBar/QMed conversi Growth Fact	60 6 80 7 Climate ((CC <u>Pre-dev</u> Makeup Method Area (ha) AR (mm) Host BFIHost Region on factor or 1 year <u>Pre-deve</u>	Storm Dura 00 960 20 1440 Change Ad %) 45 45 45 45 45 45 45 45 45 45 45 velopment D 6 FEH 0.252 869 1 0.636 7 1.136 0.85 elopment Dis 1	ations 2160 2880 dditional Area (A %) 0 0 0 0 0 0 0 0 0 0 0 0 0	4320 5760 Addition (1) 5760 (1) 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7200 8640 0nal Flow Q %) 0 0 0 0 30 year 1 00 year 2 ent (%) 0 QMed QBar ear (l/s) ear (l/s) ear (l/s)	10080 .95 .48
	1560180303012024044Return Period (years)23030100Site Greenfield Positively Drained A SAQBar/QMed conversi Growth Fact	60 6 80 7 Climate ((CC <u>Pre-dev</u> Makeup Makeup Makeup Makeup Makeup	Storm Dura 00 960 20 1440 Change Ad %) 45 45 45 45 45 velopment D Greenfield FEH 0.252 869 1 0.636 7 1.136 0.85 elopment Dis Greenfield	ations 2160 2880 dditional Area (A %) 0 0 0 0 0 0 0 0 0 0 0 0 0	4320 5760 Addition (1) Factor 10 Betterm Q 1 ye Q 30 ye Q 100 ye	7200 8640 000 Flow Q %) 0 0 0 0 30 year 1 00 year 2 ent (%) 0 QMed QBar ear (l/s) ear (l/s) ear (l/s)	10080 .95 .48
	1560180303012024044Return Period (years)230100230100Site Greenfield Positively Drained A SAQBar/QMed conversi Growth FactSite GreenfieldSite Growth Fact	60 6 80 7 Climate ((CC <u>Pre-dev</u> Makeup I Method Area (ha) AR (mm) Host BFIHost Region on factor or 1 year <u>Pre-deve</u> Makeup Method	Storm Dura 00 960 20 1440 Change Ad %) 45 45 45 45 45 45 45 45 45 9 Greenfield FEH 0.252 869 1 0.636 7 1.136 0.85 elopment Dis Greenfield FSR/FEH SR/FEH	ations 2160 2880 dditional Area (A %) 0 0 0 0 0 0 0 0 0 0 0 0 0	4320 5760 Additin (1) E h Factor 1 Betterm Q 1 ye Q 30 ye Q 100 ye Deriod (ye ate Change	7200 8640 000 al Flow Q %) 0 0 0 0 0 30 year 1 00 year 2 ent (%) 0 QMed QBar ear (l/s) ear (l/s) ear (l/s) ear (l/s)	10080 .95 .48
	1560180303012024044Return Period (years)230100230100Site Greenfield Positively Drained A SAQBar/QMed conversi Growth FactSite Greenfield Positively Drained ASite Greenfield Positively Drained A	60 6 80 7 Climate ((CC <u>Pre-dev</u> Makeup I Method Area (ha) AR (mm) Host BFIHost Region on factor or 1 year <u>Pre-deve</u> Makeup Method Area (ha)	Storm Dura 00 960 20 1440 Change Ad %) 45 45 45 45 45 velopment D Greenfield FEH 0.252 869 1 0.636 7 1.136 0.85 elopment Dis Greenfield Greenfield FSR/FEH 0.252 0.85	ations 2160 2880 ditional Area (A %) 0 0 0 0 0 0 0 0 0 0 0 0 0	4320 5760 Addition (4) 5760 Addition (4) 5760 (4	7200 8640 000 Flow Q %) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10080 .95 .48
	1560180343012024044Return Period (years)230100230100Site Greenfield Positively Drained A SAQBar/QMed conversi Growth FactSite Greenfield Positively Drained A SASite Greenfield Positively Drained A SA	60 6 80 7 Climate ((CC <u>Pre-dev</u> Makeup Mathod Area (ha) AR (mm) Host BFIHost Region on factor or 1 year <u>Pre-deve</u> Makeup Method Area (ha) Soil Index	Storm Dura 00 960 20 1440 Change Ad 45 45 45 45 45 45 velopment D Greenfield FEH 0.252 869 1 0.636 7 1.136 0.85 elopment Dis Greenfield FSR/FEH 0.252 1 1.136	ations 2160 2880 ditional Area (A %) 0 0 0 0 0 0 0 0 0 0 0 0 0	4320 5760 Addition (1) Factor 10 Betterm Q 1 yes Q 30 yes Q 100 yes Deriod (yes) Deriod (yes) A Period (yes) Deriod (yes) A Period (yes) Derived (yes) A Period (yes) A Period (yes) Derived (yes) A Period (yes) A Peri	7200 8640 000 Flow Q %) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10080 .95 .48
	1560180303012024044Return Period (years)23030100Site Greenfield Positively Drained A SAQBar/QMed conversi Growth FactSite Greenfield Positively Drained A SASite Greenfield Positively Drained A SA	60 6 80 7 Climate ((CC <u>Pre-dev</u> Makeup I Method Area (ha) AR (mm) Host BFIHost Region on factor or 1 year <u>Pre-deve</u> Makeup Method Area (ha) ioil Index SPR	Storm Dura 00 960 20 1440 Change Ad %) 45 45 45 45 45 45 45 45 45 45 45 velopment D 6 6 7 1 0.636 7 1.136 0.85 9 Elopment Dis 6 Greenfield FSR/FEH 0.252 1 0.252 1 0.252 1 0.10 0	ations 2160 2880 dditional Area (A %) 0 0 0 0 0 0 0 0 0 0 0 0 0	4320 5760 Additin (1) E Factor 10 Betterm Q 1 ye Q 30 ye Q 100 ye Q 100 ye Duration (Betterment	7200 8640 000 al Flow Q %) 0 0 0 0 0 30 year 1 00 year 2 ent (%) 0 QMed QBar ear (l/s) ear (l/s)	10080 .95 .48

Awcock Ward Partnership		File: 1552-A-Attenuation Requi	irement	Page 2	
Ada House		Network: Storm Network			
Pynes Hill		Ben Green			
Exeter EX2 410		11/08/2023			
	Node So	akaway Soakaway Storage Stru	cture		
	<u>1100C 300</u>	anaway soundway storage stru	<u>cture</u>		
Base Inf Coefficient (m/hr)	0.10800	Invert Level (m)	98.000	Depth (m)	
Side Inf Coefficient (m/hr)	0.10800	Time to half empty (mins)	1031	Inf Depth (m)	
Safety Factor	3.0	Pit Width (m)	10.000	Number Required	1
Porosity	0.95	Pit Length (m)	12.500		

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
360 minute winter	Soakaway	280	98.235	0.235	5.7	28.5704	0.0000	ОК
	Link Ev (Upstream	ent Depth)	US Node	Lir	nk C	Dutflow (I/s)		
	360 minute	winter	Soakaway	/ Infiltr	ation	1.4		

Results for 30 year +45% CC Critical Storm Duration. Lowest mass balance: 100.00%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
360 minute winter	Soakaway	344	98.583	0.583	11.3	70.6955	0.0000	ОК
	Link Ev (Upstream	ent Depth)	US Node	Liı	nk	Outflow (I/s)		
	360 minute	winter	Soakaway	/ Infiltr	ation	1.5		

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
480 minute winter	Soakaway	456	98.795	0.795	11.6	96.4442	0.0000	ОК
	Link Ev (Upstream 480 minute	ent Depth) winter	US Node Soakaway	Lir / Infiltr	ik o	Dutflow (I/s) 1.6		

Appendix I Preliminary Drainage Layout (PDL) Drawing

Appendix J Projected foul sewage flows and sewer capacity

Projected Foul Sewage Flows

Project No.	1552	Calcs by
Project Title	Land at Christy's Lane, Shaftesbury	Reviewed by
Client	Planning Issues Ltd	Date

Title	Type of Unit	Unit Value	Average Flow (I / day)	Total Flow	Total Flow	Peak Flow Multiplier	Infiltration	Peak Flow	Comments
Proposed Retirement Apartments	Residential old people / nursing home	53 persons	350 per person	18550 litres / day	0.215 litres / sec	6	Standard (10%)	1.417 litres / sec	Based on the avergae occupation rates for similar properties.
Lidl Supermarket	Commercial Premises	2000 m2	300 per 100m2	6000 litres / day	0.069 litres / sec	8	Standard (10%)	0.611 litres / sec	Total building footprint including warehouse section.
Tesco Filling Station	Full-time day staff	3 persons	90 per person	270 litres / day	0.003 litres / sec	8	Standard (10%)	0.028 litres / sec	
Tesco Car Wash						1	Standard (10%)	1.030 litres / sec	Auto Car Wash and Lance Bay estimated combined flows.
				24820 litres / day	0.287 litres / sec			3 086 litres / sec	
			Desideting a suburbance	1/5 manuals (day	0.207 Intes / sec			0.000 111123 / 380	

Colebrook-White Pipe Capacity Analysis

Project No.	1552	
Project Title	Land at Christy's Lane, Shaftesbury	
Client	Planning Issues Ltd	CMO sweekward
Sheet Ref	P:\1552 Land at Christy's Lane, Shaftesbury\D Design and Analysis\SPREADSHEETS\01 Drainage\03 Sewer Design\[Colebrook White Equation (pipe velocity & capacity).xlsx]Colebrook-White	

Calcs by	L Blackmore
Checked by	C Yalden
Approved by	C Yalden
Date	26/07/2023
Revision	Inititial

Pipe capacity calculation based on the Colebrook White Equation (HR Wallingford, 1990);

Catchment area analysis based on Modified Rational Method equation (HR Wallingford, 1990);

$Q_{BAR} = 2.78 \cdot i \cdot A$				Hydrological	Region:		*see map
Where:	Q _{BAR} i A	BAR Average discharge (I/s) Rainfall intensity (mm/hr) Catchment area (m²)			i	mm/hr	*see map
	Return Period		2yr	30yr	100yr		
	Growth Factor (Q/QBAR)		2yr	30yr	Hundred		
	Critica	li Area (na)	######	#VALUE!	#VALUE!	(area that can freely drain)	
Brownfie	ld flow r	ate analysis based	on Modif	ied Rational	Method (H	R Wallingford, 1990);	

		2yr	30yr	100yr	QBAR
Area (ha):	BF flow (l/s):	########	#VALUE!	#VALUE!	0.00

Foul capacity analysis for dwellings based on Sewers for Adoption (6th Edition);

l/dwelling/day	0.046
No. dwellings served	273
No. dwellings served +10% infiltration	248